6 Shane \( { }^{2} \) designed a rectangular mural that is \( 2 \frac{3}{4} \) yards long and \( 1 \frac{1}{3} \) yards high. What is the area in square yards of the mural?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the area of the rectangular mural, you multiply the length by the height. First, convert the mixed numbers into improper fractions. The length \(2 \frac{3}{4}\) yards is equal to \(\frac{11}{4}\) yards (since \(2 \times 4 + 3 = 11\)), and the height \(1 \frac{1}{3}\) yards is equal to \(\frac{4}{3}\) yards (since \(1 \times 3 + 1 = 4\)). Now, calculate the area: \[ \text{Area} = \frac{11}{4} \times \frac{4}{3} = \frac{11 \times 4}{4 \times 3} = \frac{11}{3} \] Therefore, the area of the mural is \(\frac{11}{3}\) square yards, which can also be expressed as approximately \(3 \frac{2}{3}\) square yards or about \(3.67\) square yards.