Pregunta
Use the imaginary number \( i \) to rewrite the expression below as a complex number. Simplify all radicals. \( -3+\sqrt{-64} \)
Ask by Allan Mann. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
-3 + 8i
\]
Solución
To rewrite the expression \( -3 + \sqrt{-64} \) as a complex number using the imaginary unit \( i \), follow these steps:
1. **Understand the Imaginary Unit \( i \):**
The imaginary unit \( i \) is defined as:
\[
i = \sqrt{-1}
\]
This means that any square root of a negative number can be expressed in terms of \( i \).
2. **Simplify the Radical \( \sqrt{-64} \):**
Break down the expression inside the square root:
\[
\sqrt{-64} = \sqrt{64 \times (-1)}
\]
Separate the square root of the product into the product of square roots:
\[
\sqrt{64 \times (-1)} = \sqrt{64} \times \sqrt{-1}
\]
Simplify each part:
\[
\sqrt{64} = 8 \quad \text{and} \quad \sqrt{-1} = i
\]
Therefore:
\[
\sqrt{-64} = 8i
\]
3. **Combine with the Real Part:**
Now, substitute \( \sqrt{-64} \) back into the original expression:
\[
-3 + \sqrt{-64} = -3 + 8i
\]
4. **Final Complex Number:**
The expression \( -3 + 8i \) is now in the standard form of a complex number, where:
\[
\text{Real part} = -3 \quad \text{and} \quad \text{Imaginary part} = 8i
\]
**Answer:**
\[
-3 + 8i
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To rewrite the expression \( -3+\sqrt{-64} \) as a complex number, we start by recognizing that \( \sqrt{-64} \) can be expressed using the imaginary unit \( i \). Specifically, we know: \[ \sqrt{-64} = \sqrt{64} \cdot \sqrt{-1} = 8i \] Now, substituting this back into the expression gives us: \[ -3 + \sqrt{-64} = -3 + 8i \] Thus, the expression rewritten as a complex number is: \[ -3 + 8i \] This provides us with both a real part (-3) and an imaginary part (8i), making it a complex number in standard form.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium