Pregunta

(1) In a convergent geometric series, the sum of the first four terms is \( \frac{80}{3} \) and the sum to infinity of the series is 27. Determine the general term.

Ask by Fernandez Hammond. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general term of the series is \( 18 \times 3^{-n+1} \).

Solución

To find the general term of a convergent geometric series, we can use the formula for the sum of the first n terms of a geometric series: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] where: - \( S_n \) is the sum of the first n terms, - \( a \) is the first term, - \( r \) is the common ratio. Given that the sum of the first four terms is \( \frac{80}{3} \) and the sum to infinity is 27, we can set up the following equations: 1. For the sum of the first four terms: \[ S_4 = \frac{a(1 - r^4)}{1 - r} = \frac{80}{3} \] 2. For the sum to infinity: \[ S_{\infty} = \frac{a}{1 - r} = 27 \] We can solve these equations simultaneously to find the values of \( a \) and \( r \), and then use them to determine the general term of the series. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\frac{a\left(1-r^{4}\right)}{1-r}=\frac{80}{3}\\\frac{a}{1-r}=27\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}a\left(1+r+r^{2}+r^{3}\right)=\frac{80}{3}\\\frac{a}{1-r}=27\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}a=\frac{80}{3+3r+3r^{2}+3r^{3}}\\\frac{a}{1-r}=27\end{array}\right.\) - step3: Substitute the value of \(a:\) \(\frac{\frac{80}{3+3r+3r^{2}+3r^{3}}}{1-r}=27\) - step4: Simplify: \(\frac{80}{\left(3+3r+3r^{2}+3r^{3}\right)\left(1-r\right)}=27\) - step5: Cross multiply: \(80=\left(3+3r+3r^{2}+3r^{3}\right)\left(1-r\right)\times 27\) - step6: Simplify the equation: \(80=27\left(3+3r+3r^{2}+3r^{3}\right)\left(1-r\right)\) - step7: Swap the sides: \(27\left(3+3r+3r^{2}+3r^{3}\right)\left(1-r\right)=80\) - step8: Expand the expression: \(81-81r^{4}=80\) - step9: Move the constant to the right side: \(-81r^{4}=80-81\) - step10: Subtract the numbers: \(-81r^{4}=-1\) - step11: Change the signs: \(81r^{4}=1\) - step12: Divide both sides: \(\frac{81r^{4}}{81}=\frac{1}{81}\) - step13: Divide the numbers: \(r^{4}=\frac{1}{81}\) - step14: Simplify the expression: \(r=\pm \sqrt[4]{\frac{1}{81}}\) - step15: Simplify: \(r=\pm \frac{1}{3}\) - step16: Separate into possible cases: \(r=\frac{1}{3}\cup r=-\frac{1}{3}\) - step17: Rearrange the terms: \(\left\{ \begin{array}{l}a=\frac{80}{3+3r+3r^{2}+3r^{3}}\\r=\frac{1}{3}\end{array}\right.\cup \left\{ \begin{array}{l}a=\frac{80}{3+3r+3r^{2}+3r^{3}}\\r=-\frac{1}{3}\end{array}\right.\) - step18: Calculate: \(\left\{ \begin{array}{l}a=18\\r=\frac{1}{3}\end{array}\right.\cup \left\{ \begin{array}{l}a=36\\r=-\frac{1}{3}\end{array}\right.\) - step19: Check the solution: \(\left\{ \begin{array}{l}a=18\\r=\frac{1}{3}\end{array}\right.\cup \left\{ \begin{array}{l}a=36\\r=-\frac{1}{3}\end{array}\right.\) - step20: Rewrite: \(\left(a,r\right) = \left(18,\frac{1}{3}\right)\cup \left(a,r\right) = \left(36,-\frac{1}{3}\right)\) The solutions to the system of equations are: 1. \( a = 18 \) and \( r = \frac{1}{3} \) 2. \( a = 36 \) and \( r = -\frac{1}{3} \) Since the series is convergent, the common ratio \( r \) must be between -1 and 1. Therefore, the correct solution is \( a = 18 \) and \( r = \frac{1}{3} \). Now, we can use the formula for the general term of a geometric series: \[ a_n = a \cdot r^{n-1} \] Substitute the values of \( a \) and \( r \) into the formula to find the general term of the series. Simplify the expression by following steps: - step0: Solution: \(18\left(\frac{1}{3}\right)^{n-1}\) - step1: Multiply the terms: \(18\times 3^{-n+1}\) The general term of the convergent geometric series is \( 18 \times 3^{-n+1} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, we start by recalling the formulas for the sum of a geometric series. The sum to infinity \( S \) for a convergent geometric series is given by \[ S = \frac{a}{1 - r} \] where \( a \) is the first term and \( r \) is the common ratio (with \( |r| < 1 \)). Here, we know: \[ S = 27 \implies \frac{a}{1 - r} = 27 \tag{1} \] Next, the sum of the first \( n \) terms of a geometric series is given by \[ S_n = a \frac{1 - r^n}{1 - r} \] We want the sum of the first four terms, \( S_4 \): \[ S_4 = a \frac{1 - r^4}{1 - r} = \frac{80}{3} \tag{2} \] Now we have two equations to work with: equation (1) for the sum to infinity and equation (2) for the sum of the first four terms. We can isolate \( a \) from (1): \[ a = 27(1 - r) \tag{3} \] Substituting (3) into (2): \[ 27(1 - r) \frac{1 - r^4}{1 - r} = \frac{80}{3} \] This simplifies to: \[ 27(1 - r^4) = \frac{80}{3} \] Now, multiply both sides by 3 to eliminate the fraction: \[ 81(1 - r^4) = 80 \] Then, divide by 81: \[ 1 - r^4 = \frac{80}{81} \] Thus, \[ r^4 = 1 - \frac{80}{81} = \frac{1}{81} \] Taking the fourth root gives us: \[ r = \frac{1}{3} \] Next, we substitute \( r \) back into equation (3) to find \( a \): \[ a = 27(1 - \frac{1}{3}) = 27 \times \frac{2}{3} = 18 \] Now we have \( a = 18 \) and \( r = \frac{1}{3} \). The general term of a geometric series is given by: \[ T_n = a \cdot r^{n-1} \] Substituting \( a \) and \( r \): \[ T_n = 18 \left(\frac{1}{3}\right)^{n-1} \] Thus, the general term of the given convergent geometric series is: \[ \boxed{18 \left(\frac{1}{3}\right)^{n-1}} \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad