Pregunta
Name:
14. For this problem,
. Because
is differentiable everywhere, it satisfies all hypotheses of the MVT on any interval
.
a) What does the MVT say about
on
? Find all suitable values of
. How many are there?
b) What does the MVT say about
on
? Find all suitable values of
. How many are there?
c) Show that for
and any interval
, the MVT’s number
is the midpoint of
.
14. For this problem,
a) What does the MVT say about
b) What does the MVT say about
c) Show that for
Ask by Tucker Gordon. in the United States
Jan 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
For the function
:
a) On the interval
, the MVT says there’s one value
where the slope equals the average rate of change.
b) On the interval
, the MVT says there’s one value
where the slope equals the average rate of change.
c) For any interval
, the MVT’s value
is the midpoint
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
The Deep Dive
The Mean Value Theorem (MVT) states that if a function is continuous on a closed interval
and differentiable on the open interval
, then there exists at least one point
in
such that
. For
, you can calculate its derivative
and apply the MVT to find those values of
.
For the interval
,
,
, therefore
. Setting
gives
. Thus, there is 1 suitable value of
, which is
.
For the interval
,
and
, thus
. Solving
results in
, meaning there is 1 suitable value of
here too, which is
.
To prove that
is always the midpoint of
, consider
. Since
, setting
yields
, confirming that
is indeed the midpoint of any interval
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium