Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { 1) } a^{1}-a^{2} b & \text { 1) } 5 x^{3} y^{3}-20 x y^{2} \\ \text { m) } 3 x^{2}-6 x^{3}+9 x^{4} & \text { n) } 4 p q^{2}-8 p q-12 p^{2} q \\ \text { a) } 5 a^{2}-10 a b+5 b^{2} & \text { p) } 3 a^{2}-6 a+9 \\ \text { q) }-6 a b^{1}+4 c b^{2}-2 d b & \text { r) } 7 x^{2} y^{2}-35 x y^{2} z-28 y \\ \text { s) } 16 a^{4} b^{8}-8 a^{3} b^{7}+36 a^{2} b^{3} & \text { t) } 4 \pi R^{2}-8 \pi R \\ \text { u) } \frac{1}{4} a^{2} b^{3}-\frac{1}{16} a^{3} b^{2} & \text { v) } 9 x^{3} y z^{2}+3 x y z-18 x\end{array} \)

Ask by Pope Mitchell. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factored forms of the given expressions: 1. \( a^{1}-a^{2} b = a(1-ab) \) 2. \( 5 x^{3} y^{3}-20 x y^{2} = 5xy^{2}(x^{2}y-4) \) 3. \( 3 x^{2}-6 x^{3}+9 x^{4} = 3x^{2}(1-2x+3x^{2}) \) 4. \( 4 p q^{2}-8 p q-12 p^{2} q = 4pq(q-2-3p) \) 5. \( 5 a^{2}-10 a b+5 b^{2} = 5(a-b)^{2} \) 6. \( 3 a^{2}-6 a+9 = 3(a^{2}-2a+3) \) 7. \( -6 a b^{1}+4 c b^{2}-2 d b = -2b(3a-2cb+d) \) 8. \( 7 x^{2} y^{2}-35 x y^{2} z-28 y = 7y(x^{2}y-5xyz-4) \) 9. \( 16 a^{4} b^{8}-8 a^{3} b^{7}+36 a^{2} b^{3} = 4a^{2}b^{3}(4a^{2}b^{5}-2ab^{4}+9) \) 10. \( 4 \pi R^{2}-8 \pi R = 4\pi R(R-2) \) 11. \( \frac{1}{4} a^{2} b^{3}-\frac{1}{16} a^{3} b^{2} = \frac{1}{16}a^{2}b^{2}(4b-a) \) 12. \( 9 x^{3} y z^{2}+3 x y z-18 x = 3x(3x^{2}yz^{2}+yz-6) \)

Solución

Factor the expression by following steps: - step0: Factor: \(3x^{2}-6x^{3}+9x^{4}\) - step1: Factor the expression: \(3\left(x^{2}-2x^{3}+3x^{4}\right)\) - step2: Factor the expression: \(3x^{2}\left(1-2x+3x^{2}\right)\) Factor the expression \( 5 a^{2}-10 a b+5 b^{2 \). Factor the expression by following steps: - step0: Factor: \(5a^{2}-10ab+5b^{2}\) - step1: Factor the expression: \(5\left(a-b\right)^{2}\) Factor the expression \( a^{1}-a^{2} b \). Factor the expression by following steps: - step0: Factor: \(a-a^{2}b\) - step1: Factor the expression: \(a\left(1-ab\right)\) Factor the expression \( 3 a^{2}-6 a+9 \). Factor the expression by following steps: - step0: Factor: \(3a^{2}-6a+9\) - step1: Factor the expression: \(3\left(a^{2}-2a+3\right)\) Factor the expression \( 4 p q^{2}-8 p q-12 p^{2} q \). Factor the expression by following steps: - step0: Factor: \(4pq^{2}-8pq-12p^{2}q\) - step1: Factor the expression: \(4\left(pq^{2}-2pq-3p^{2}q\right)\) - step2: Factor the expression: \(4pq\left(q-2-3p\right)\) Factor the expression \( 5 x^{3} y^{3}-20 x y^{2} \). Factor the expression by following steps: - step0: Factor: \(5x^{3}y^{3}-20xy^{2}\) - step1: Factor the expression: \(5\left(x^{3}y^{3}-4xy^{2}\right)\) - step2: Factor the expression: \(5xy^{2}\left(x^{2}y-4\right)\) Factor the expression \( -6 a b^{1}+4 c b^{2}-2 d b \). Factor the expression by following steps: - step0: Factor: \(-6ab+4cb^{2}-2db\) - step1: Factor the expression: \(-2\left(3ba-2b^{2}c+bd\right)\) - step2: Factor the expression: \(-2b\left(3a-2cb+d\right)\) Factor the expression \( 9 x^{3} y z^{2}+3 x y z-18 x \). Factor the expression by following steps: - step0: Factor: \(9x^{3}yz^{2}+3xyz-18x\) - step1: Factor the expression: \(3\left(3x^{3}yz^{2}+xyz-6x\right)\) - step2: Factor the expression: \(3x\left(3x^{2}yz^{2}+yz-6\right)\) Factor the expression \( 4 \pi R^{2}-8 \pi R \). Factor the expression by following steps: - step0: Factor: \(4\pi R^{2}-8\pi R\) - step1: Factor the expression: \(4\pi \left(R^{2}-2R\right)\) - step2: Factor the expression: \(4\pi R\left(R-2\right)\) Factor the expression \( 16 a^{4} b^{8}-8 a^{3} b^{7}+36 a^{2} b^{3 \). Factor the expression by following steps: - step0: Factor: \(16a^{4}b^{8}-8a^{3}b^{7}+36a^{2}b^{3}\) - step1: Factor the expression: \(4\left(4a^{4}b^{8}-2a^{3}b^{7}+9a^{2}b^{3}\right)\) - step2: Factor the expression: \(4a^{2}b^{3}\left(4a^{2}b^{5}-2ab^{4}+9\right)\) Factor the expression \( 7 x^{2} y^{2}-35 x y^{2} z-28 y \). Factor the expression by following steps: - step0: Factor: \(7x^{2}y^{2}-35xy^{2}z-28y\) - step1: Factor the expression: \(7\left(y^{2}x^{2}-5y^{2}xz-4y\right)\) - step2: Factor the expression: \(7y\left(x^{2}y-5xyz-4\right)\) Factor the expression \( \frac{1}{4} a^{2} b^{3}-\frac{1}{16} a^{3} b^{2 \). Factor the expression by following steps: - step0: Factor: \(\frac{1}{4}a^{2}b^{3}-\frac{1}{16}a^{3}b^{2}\) - step1: Factor the expression: \(\frac{1}{16}\left(4a^{2}b^{3}-a^{3}b^{2}\right)\) - step2: Factor the expression: \(\frac{1}{16}a^{2}b^{2}\left(4b-a\right)\) Here are the factored forms of the given expressions: 1) \( a^{1}-a^{2} b \) **Factored Form:** \( a(1-ab) \) 2) \( 5 x^{3} y^{3}-20 x y^{2} \) **Factored Form:** \( 5xy^{2}(x^{2}y-4) \) 3) \( 3 x^{2}-6 x^{3}+9 x^{4} \) **Factored Form:** \( 3x^{2}(1-2x+3x^{2}) \) 4) \( 4 p q^{2}-8 p q-12 p^{2} q \) **Factored Form:** \( 4pq(q-2-3p) \) 5) \( 5 a^{2}-10 a b+5 b^{2} \) **Factored Form:** \( 5(a-b)^{2} \) 6) \( 3 a^{2}-6 a+9 \) **Factored Form:** \( 3(a^{2}-2a+3) \) 7) \( -6 a b^{1}+4 c b^{2}-2 d b \) **Factored Form:** \( -2b(3a-2cb+d) \) 8) \( 7 x^{2} y^{2}-35 x y^{2} z-28 y \) **Factored Form:** \( 7y(x^{2}y-5xyz-4) \) 9) \( 16 a^{4} b^{8}-8 a^{3} b^{7}+36 a^{2} b^{3} \) **Factored Form:** \( 4a^{2}b^{3}(4a^{2}b^{5}-2ab^{4}+9) \) 10) \( 4 \pi R^{2}-8 \pi R \) **Factored Form:** \( 4\pi R(R-2) \) 11) \( \frac{1}{4} a^{2} b^{3}-\frac{1}{16} a^{3} b^{2} \) **Factored Form:** \( \frac{1}{16}a^{2}b^{2}(4b-a) \) 12) \( 9 x^{3} y z^{2}+3 x y z-18 x \) **Factored Form:** \( 3x(3x^{2}yz^{2}+yz-6) \) These factorizations simplify the expressions and reveal their underlying structure. If you need further assistance or explanations on any specific factorization, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's start with a little historical background! Factoring polynomials actually dates back to ancient civilizations like the Babylonians who used early forms of algebra. They solved quadratic equations using geometric methods, paving the way for modern algebra. Over the centuries, influential mathematicians such as Diophantus and al-Khwarizmi contributed to the development of factoring techniques, turning it into a systematic part of algebra we still use today. Now, moving on to some practical problem-solving tips! When factoring polynomials, always look for a common factor first—it's a game-changer! For example, in \( 5x^3y^3 - 20xy^2 \), the greatest common factor is \( 5xy^2 \), so factor that out to simplify your equation. Also, keep an eye out for special products like perfect squares or the difference of squares; these can save you a lot of time and effort when factoring!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad