Responder
Here are the factored forms of the given expressions:
1. \( a^{1}-a^{2} b = a(1-ab) \)
2. \( 5 x^{3} y^{3}-20 x y^{2} = 5xy^{2}(x^{2}y-4) \)
3. \( 3 x^{2}-6 x^{3}+9 x^{4} = 3x^{2}(1-2x+3x^{2}) \)
4. \( 4 p q^{2}-8 p q-12 p^{2} q = 4pq(q-2-3p) \)
5. \( 5 a^{2}-10 a b+5 b^{2} = 5(a-b)^{2} \)
6. \( 3 a^{2}-6 a+9 = 3(a^{2}-2a+3) \)
7. \( -6 a b^{1}+4 c b^{2}-2 d b = -2b(3a-2cb+d) \)
8. \( 7 x^{2} y^{2}-35 x y^{2} z-28 y = 7y(x^{2}y-5xyz-4) \)
9. \( 16 a^{4} b^{8}-8 a^{3} b^{7}+36 a^{2} b^{3} = 4a^{2}b^{3}(4a^{2}b^{5}-2ab^{4}+9) \)
10. \( 4 \pi R^{2}-8 \pi R = 4\pi R(R-2) \)
11. \( \frac{1}{4} a^{2} b^{3}-\frac{1}{16} a^{3} b^{2} = \frac{1}{16}a^{2}b^{2}(4b-a) \)
12. \( 9 x^{3} y z^{2}+3 x y z-18 x = 3x(3x^{2}yz^{2}+yz-6) \)
Solución
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}-6x^{3}+9x^{4}\)
- step1: Factor the expression:
\(3\left(x^{2}-2x^{3}+3x^{4}\right)\)
- step2: Factor the expression:
\(3x^{2}\left(1-2x+3x^{2}\right)\)
Factor the expression \( 5 a^{2}-10 a b+5 b^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(5a^{2}-10ab+5b^{2}\)
- step1: Factor the expression:
\(5\left(a-b\right)^{2}\)
Factor the expression \( a^{1}-a^{2} b \).
Factor the expression by following steps:
- step0: Factor:
\(a-a^{2}b\)
- step1: Factor the expression:
\(a\left(1-ab\right)\)
Factor the expression \( 3 a^{2}-6 a+9 \).
Factor the expression by following steps:
- step0: Factor:
\(3a^{2}-6a+9\)
- step1: Factor the expression:
\(3\left(a^{2}-2a+3\right)\)
Factor the expression \( 4 p q^{2}-8 p q-12 p^{2} q \).
Factor the expression by following steps:
- step0: Factor:
\(4pq^{2}-8pq-12p^{2}q\)
- step1: Factor the expression:
\(4\left(pq^{2}-2pq-3p^{2}q\right)\)
- step2: Factor the expression:
\(4pq\left(q-2-3p\right)\)
Factor the expression \( 5 x^{3} y^{3}-20 x y^{2} \).
Factor the expression by following steps:
- step0: Factor:
\(5x^{3}y^{3}-20xy^{2}\)
- step1: Factor the expression:
\(5\left(x^{3}y^{3}-4xy^{2}\right)\)
- step2: Factor the expression:
\(5xy^{2}\left(x^{2}y-4\right)\)
Factor the expression \( -6 a b^{1}+4 c b^{2}-2 d b \).
Factor the expression by following steps:
- step0: Factor:
\(-6ab+4cb^{2}-2db\)
- step1: Factor the expression:
\(-2\left(3ba-2b^{2}c+bd\right)\)
- step2: Factor the expression:
\(-2b\left(3a-2cb+d\right)\)
Factor the expression \( 9 x^{3} y z^{2}+3 x y z-18 x \).
Factor the expression by following steps:
- step0: Factor:
\(9x^{3}yz^{2}+3xyz-18x\)
- step1: Factor the expression:
\(3\left(3x^{3}yz^{2}+xyz-6x\right)\)
- step2: Factor the expression:
\(3x\left(3x^{2}yz^{2}+yz-6\right)\)
Factor the expression \( 4 \pi R^{2}-8 \pi R \).
Factor the expression by following steps:
- step0: Factor:
\(4\pi R^{2}-8\pi R\)
- step1: Factor the expression:
\(4\pi \left(R^{2}-2R\right)\)
- step2: Factor the expression:
\(4\pi R\left(R-2\right)\)
Factor the expression \( 16 a^{4} b^{8}-8 a^{3} b^{7}+36 a^{2} b^{3 \).
Factor the expression by following steps:
- step0: Factor:
\(16a^{4}b^{8}-8a^{3}b^{7}+36a^{2}b^{3}\)
- step1: Factor the expression:
\(4\left(4a^{4}b^{8}-2a^{3}b^{7}+9a^{2}b^{3}\right)\)
- step2: Factor the expression:
\(4a^{2}b^{3}\left(4a^{2}b^{5}-2ab^{4}+9\right)\)
Factor the expression \( 7 x^{2} y^{2}-35 x y^{2} z-28 y \).
Factor the expression by following steps:
- step0: Factor:
\(7x^{2}y^{2}-35xy^{2}z-28y\)
- step1: Factor the expression:
\(7\left(y^{2}x^{2}-5y^{2}xz-4y\right)\)
- step2: Factor the expression:
\(7y\left(x^{2}y-5xyz-4\right)\)
Factor the expression \( \frac{1}{4} a^{2} b^{3}-\frac{1}{16} a^{3} b^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(\frac{1}{4}a^{2}b^{3}-\frac{1}{16}a^{3}b^{2}\)
- step1: Factor the expression:
\(\frac{1}{16}\left(4a^{2}b^{3}-a^{3}b^{2}\right)\)
- step2: Factor the expression:
\(\frac{1}{16}a^{2}b^{2}\left(4b-a\right)\)
Here are the factored forms of the given expressions:
1) \( a^{1}-a^{2} b \)
**Factored Form:** \( a(1-ab) \)
2) \( 5 x^{3} y^{3}-20 x y^{2} \)
**Factored Form:** \( 5xy^{2}(x^{2}y-4) \)
3) \( 3 x^{2}-6 x^{3}+9 x^{4} \)
**Factored Form:** \( 3x^{2}(1-2x+3x^{2}) \)
4) \( 4 p q^{2}-8 p q-12 p^{2} q \)
**Factored Form:** \( 4pq(q-2-3p) \)
5) \( 5 a^{2}-10 a b+5 b^{2} \)
**Factored Form:** \( 5(a-b)^{2} \)
6) \( 3 a^{2}-6 a+9 \)
**Factored Form:** \( 3(a^{2}-2a+3) \)
7) \( -6 a b^{1}+4 c b^{2}-2 d b \)
**Factored Form:** \( -2b(3a-2cb+d) \)
8) \( 7 x^{2} y^{2}-35 x y^{2} z-28 y \)
**Factored Form:** \( 7y(x^{2}y-5xyz-4) \)
9) \( 16 a^{4} b^{8}-8 a^{3} b^{7}+36 a^{2} b^{3} \)
**Factored Form:** \( 4a^{2}b^{3}(4a^{2}b^{5}-2ab^{4}+9) \)
10) \( 4 \pi R^{2}-8 \pi R \)
**Factored Form:** \( 4\pi R(R-2) \)
11) \( \frac{1}{4} a^{2} b^{3}-\frac{1}{16} a^{3} b^{2} \)
**Factored Form:** \( \frac{1}{16}a^{2}b^{2}(4b-a) \)
12) \( 9 x^{3} y z^{2}+3 x y z-18 x \)
**Factored Form:** \( 3x(3x^{2}yz^{2}+yz-6) \)
These factorizations simplify the expressions and reveal their underlying structure. If you need further assistance or explanations on any specific factorization, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución