Pregunta
upstudy study bank question image url

EXERCISE 1.13 (a) Factorise: \( \begin{array}{lll}\text { (1) } 27 x^{3}-1 & \text { (2) } 8 x^{3}+1 & \text { (3) } 64 x^{3}-y^{3} \\ \text { (4) } 125-729 x^{3} & \text { (5) } a^{3} b^{3}-216 & \text { (6) } \\ \text { (60) } \\ \text { (7) } 8 a^{4}-64 a & \text { (8) }-x^{3}-27 & \text { (9) }\end{array} \)

Ask by Beck Hampton. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factorizations: 1. \(27x^3 - 1 = (3x - 1)(9x^2 + 3x + 1)\) 2. \(8x^3 + 1 = (2x + 1)(4x^2 - 2x + 1)\) 3. \(64x^3 - y^3 = (4x - y)(16x^2 + 4xy + y^2)\) 4. \(125 - 729x^3 = (5 - 9x)(25 + 45x + 81x^2)\) 5. \(a^3b^3 - 216 = (ab - 6)(a^2b^2 + 6ab + 36)\) 6. \(8a^4 - 64a = 8a(a - 2)(a^2 + 2a + 4)\) 7. \(-x^3 - 27 = -(x + 3)(x^2 - 3x + 9)\)

Solución

Factor the expression by following steps: - step0: Factor: \(-x^{3}-27\) - step1: Factor the expression: \(-\left(x^{3}+27\right)\) - step2: Factor the expression: \(-\left(x+3\right)\left(x^{2}-3x+9\right)\) Factor the expression \( 8 x^{3}+1 \). Factor the expression by following steps: - step0: Factor: \(8x^{3}+1\) - step1: Rewrite the expression: \(\left(2x\right)^{3}+1^{3}\) - step2: Factor the expression: \(\left(2x+1\right)\left(\left(2x\right)^{2}-2x\times 1+1^{2}\right)\) - step3: Evaluate: \(\left(2x+1\right)\left(4x^{2}-2x+1\right)\) Factor the expression \( 64 x^{3}-y^{3 \). Factor the expression by following steps: - step0: Factor: \(64x^{3}-y^{3}\) - step1: Rewrite the expression: \(\left(4x\right)^{3}-y^{3}\) - step2: Factor the expression: \(\left(4x-y\right)\left(\left(4x\right)^{2}+4xy+y^{2}\right)\) - step3: Evaluate: \(\left(4x-y\right)\left(16x^{2}+4xy+y^{2}\right)\) Factor the expression \( 125-729 x^{3 \). Factor the expression by following steps: - step0: Factor: \(125-729x^{3}\) - step1: Rewrite the expression: \(5^{3}-\left(9x\right)^{3}\) - step2: Factor the expression: \(\left(5-9x\right)\left(5^{2}+5\times 9x+\left(9x\right)^{2}\right)\) - step3: Evaluate: \(\left(5-9x\right)\left(25+45x+81x^{2}\right)\) Factor the expression \( 8 a^{4}-64 a \). Factor the expression by following steps: - step0: Factor: \(8a^{4}-64a\) - step1: Factor the expression: \(8a\left(a^{3}-8\right)\) - step2: Factor the expression: \(8a\left(a-2\right)\left(a^{2}+2a+4\right)\) Factor the expression \( 27 x^{3}-1 \). Factor the expression by following steps: - step0: Factor: \(27x^{3}-1\) - step1: Rewrite the expression: \(\left(3x\right)^{3}-1^{3}\) - step2: Factor the expression: \(\left(3x-1\right)\left(\left(3x\right)^{2}+3x\times 1+1^{2}\right)\) - step3: Evaluate: \(\left(3x-1\right)\left(9x^{2}+3x+1\right)\) Factor the expression \( a^{3} b^{3}-216 \). Factor the expression by following steps: - step0: Factor: \(a^{3}b^{3}-216\) - step1: Rewrite the expression: \(\left(ab\right)^{3}-6^{3}\) - step2: Factor the expression: \(\left(ab-6\right)\left(\left(ab\right)^{2}+ab\times 6+6^{2}\right)\) - step3: Use the properties of exponents: \(\left(ab-6\right)\left(a^{2}b^{2}+6ab+36\right)\) Here are the factorizations for each expression: 1. **For \(27 x^{3}-1\)**: \[ 27 x^{3}-1 = (3x-1)(9x^{2}+3x+1) \] 2. **For \(8 x^{3}+1\)**: \[ 8 x^{3}+1 = (2x+1)(4x^{2}-2x+1) \] 3. **For \(64 x^{3}-y^{3}\)**: \[ 64 x^{3}-y^{3} = (4x-y)(16x^{2}+4xy+y^{2}) \] 4. **For \(125-729 x^{3}\)**: \[ 125-729 x^{3} = (5-9x)(25+45x+81x^{2}) \] 5. **For \(a^{3} b^{3}-216\)**: \[ a^{3} b^{3}-216 = (ab-6)(a^{2}b^{2}+6ab+36) \] 6. **For \(8 a^{4}-64 a\)**: \[ 8 a^{4}-64 a = 8a(a-2)(a^{2}+2a+4) \] 7. **For \(-x^{3}-27\)**: \[ -x^{3}-27 = -(x+3)(x^{2}-3x+9) \] These factorizations utilize the sum and difference of cubes, as well as factoring out common terms where applicable.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's dive into these exercises and factor the expressions! 1. **27x³ - 1**: This is a difference of cubes, which can be factored using the formula \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \). Here, let \( a = 3x \) and \( b = 1 \): \[ 27x^3 - 1 = (3x - 1)(9x^2 + 3x + 1) \] 2. **8x³ + 1**: This is a sum of cubes, factored using \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \). Let \( a = 2x \) and \( b = 1 \): \[ 8x^3 + 1 = (2x + 1)(4x^2 - 2x + 1) \] 3. **64x³ - y³**: Again, this is a difference of cubes with \( a = 4x \) and \( b = y \): \[ 64x^3 - y^3 = (4x - y)(16x^2 + 4xy + y^2) \] 4. **125 - 729x³**: This expression can also be viewed as a difference of cubes. Let \( a = 5 \) and \( b = 9x \): \[ 125 - 729x^3 = (5 - 9x)(25 + 45x + 81x^2) \] 5. **a³b³ - 216**: Noticing that \( 216 = 6^3 \), we can express this as a difference of cubes with \( a = ab \) and \( b = 6 \): \[ a^3b^3 - 216 = (ab - 6)(a^2b^2 + 6ab + 36) \] 6. **8a⁴ - 64a**: This expression has a common factor of \( 8a \): \[ 8a^4 - 64a = 8a(a^3 - 8) = 8a(a - 2)(a^2 + 2a + 4) \] 7. **-x³ - 27**: This can be rewritten as \(- (x^3 + 27)\). Recognizing it as a sum of cubes with \( a = x \) and \( b = 3 \): \[ -x^3 - 27 = -(x + 3)(x^2 - 3x + 9) \] And voilà! Each expression has been factored accordingly! If you have more questions or need further help, feel free to ask!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad