Pregunta
upstudy study bank question image url

12. Solve the equation \( (x+3)^{2}=49 \)

Ask by Hill Barrett. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = 4 \) and \( x = -10 \).

Solución

To solve the equation \( (x + 3)^2 = 49 \), follow these steps: 1. **Take the Square Root of Both Sides:** \[ \sqrt{(x + 3)^2} = \sqrt{49} \] This simplifies to: \[ x + 3 = \pm 7 \] The ± symbol indicates that there are two possible cases to consider. 2. **Solve for \( x \) in Each Case:** - **Case 1:** \( x + 3 = 7 \) \[ x = 7 - 3 \] \[ x = 4 \] - **Case 2:** \( x + 3 = -7 \) \[ x = -7 - 3 \] \[ x = -10 \] 3. **Conclusion:** The equation \( (x + 3)^2 = 49 \) has two solutions: \[ x = 4 \quad \text{and} \quad x = -10 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( (x+3)^{2}=49 \), we start by taking the square root of both sides. Remember, when you take the square root, you have to consider both the positive and negative roots. This gives us: \[ x + 3 = 7 \quad \text{or} \quad x + 3 = -7 \] Solving each case, we first take \( x + 3 = 7 \): \[ x = 7 - 3 = 4 \] Then, for \( x + 3 = -7 \): \[ x = -7 - 3 = -10 \] Thus, the solutions to the equation are \( x = 4 \) and \( x = -10 \). Now, just for a little historical fun, did you know the Pythagoreans, the ancient Greek mathematicians, were among the first to study quadratic equations? They didn't have the formal methods we use today, but they knew how to manipulate shapes and values. Gardens with simple square shapes were tested based on these principles! And while you're honing your math skills, watch out for the classic mistake of forgetting the plus-minus aspect when taking square roots! Always remember – equations can sometimes hide extra solutions that are just waiting to be found. It’s like a treasure hunt for numbers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad