Pregunta
upstudy study bank question image url

\( I = \int _ { 0 } ^ { 1 } x f ^ { \prime } ( x ) d x \)

Ask by Wilson Bryant. in Tunisia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral simplifies to \( f(1) - \int_{0}^{1} f(x) \, dx \).

Solución

To evaluate the integral \[ I = \int_{0}^{1} x f^{\prime}(x) \, dx, \] we can use **integration by parts**. Integration by parts is based on the formula: \[ \int u \, dv = uv - \int v \, du, \] where \( u \) and \( dv \) are continuously differentiable functions on the interval of integration. ### Step 1: Choose \( u \) and \( dv \) Let's assign: \[ \begin{cases} u = x & \Rightarrow \frac{du}{dx} = 1 \, \Rightarrow \, du = dx, \\ dv = f^{\prime}(x) \, dx & \Rightarrow v = f(x). \end{cases} \] ### Step 2: Apply Integration by Parts Substituting into the integration by parts formula: \[ I = \int_{0}^{1} x f^{\prime}(x) \, dx = \left. x f(x) \right|_{0}^{1} - \int_{0}^{1} f(x) \cdot 1 \, dx. \] ### Step 3: Evaluate the Boundary Terms Compute the boundary term \( \left. x f(x) \right|_{0}^{1} \): \[ \left. x f(x) \right|_{0}^{1} = (1 \cdot f(1)) - (0 \cdot f(0)) = f(1) - 0 = f(1). \] ### Step 4: Combine the Results Putting it all together: \[ I = f(1) - \int_{0}^{1} f(x) \, dx. \] ### Final Result Thus, the integral simplifies to: \[ \int_{0}^{1} x f^{\prime}(x) \, dx = f(1) - \int_{0}^{1} f(x) \, dx. \] This result expresses the original integral in terms of the function \( f \) evaluated at the upper limit and the integral of \( f \) itself over the interval \([0, 1]\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that integration by parts can be a real lifesaver when tackling integrals like this? For your integral \( I = \int _{ 0 }^{ 1 } x f^{ \prime }(x) d x \), you can apply the integration by parts formula \( \int u \, dv = uv - \int v \, du \). In this case, let \( u = x \) and \( dv = f^{\prime}(x) dx \). This method not only simplifies the integral but gives you an insightful result related to \( f(x) \) itself! Another fun fact is that this integral can often be interpreted in the context of physics or economics. For instance, if \( f(x) \) represents a cost function, then \( I \) might represent the total cost associated with producing a certain quantity over the interval from 0 to 1. This connection between mathematical concepts and real-world situations really illuminates the power of calculus in understanding and solving practical problems we encounter every day!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad