Pregunta

Describe how the graph of the quadratic function changes if the equation is altered from \( y = x^2 \) to \( y = (x + 2)^2 \).

Ask by Norris Lawson. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph shifts 2 units to the left, moving the vertex from (0,0) to (-2,0).

Solución

When altering the quadratic function from \( y = x^2 \) to \( y = (x + 2)^2 \), the graph undergoes a horizontal shift. Here's a detailed breakdown of the changes: 1. **Horizontal Shift:** - **Direction:** The graph shifts **2 units to the left**. - **Reason:** The equation \( y = (x + 2)^2 \) can be rewritten as \( y = (x - (-2))^2 \), indicating a horizontal shift of \( -2 \) units (left) from the original graph. 2. **Vertex Movement:** - **Original Vertex:** For \( y = x^2 \), the vertex is at the origin \( (0, 0) \). - **New Vertex:** After the shift, the vertex moves to \( (-2, 0) \). 3. **Axis of Symmetry:** - **Original Axis:** The axis of symmetry for \( y = x^2 \) is the vertical line \( x = 0 \). - **New Axis:** For \( y = (x + 2)^2 \), the axis of symmetry shifts to \( x = -2 \). 4. **Shape and Orientation:** - **Same Shape:** The parabola retains its **U-shape** and **width**; there is no vertical stretching, compression, or reflection. - **Opening Direction:** It continues to **open upwards**, just like the original graph. 5. **Key Points:** - **No Vertical Shift:** There's no change in the \( y \)-values; only the \( x \)-values are affected. - **Example Point Transformation:** A point \( (a, b) \) on \( y = x^2 \) moves to \( (a - 2, b) \) on \( y = (x + 2)^2 \). **Visual Illustration:** - **Original Graph (\( y = x^2 \)):** - Vertex at \( (0, 0) \) - Passes through points like \( (1, 1) \) and \( (-1, 1) \) - **Shifted Graph (\( y = (x + 2)^2 \)):** - Vertex at \( (-2, 0) \) - Passes through points like \( (-1, 1) \) and \( (-3, 1) \) **Conclusion:** Changing the equation from \( y = x^2 \) to \( y = (x + 2)^2 \) results in the entire parabola shifting **2 units to the left** on the Cartesian plane, with the vertex moving from the origin to the point \( (-2, 0) \). The overall shape and orientation of the graph remain unchanged.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When you change the equation from \( y = x^2 \) to \( y = (x + 2)^2 \), the graph shifts horizontally to the left by 2 units. This means that the vertex, which was originally at the point (0, 0) for \( y = x^2 \), now moves to the point (-2, 0). Despite this shift, the shape of the parabola remains the same, curving upwards as \( x \) moves away from the vertex. Additionally, this transformation doesn't affect the width or the orientation of the parabola. Whether it's at \( y = x^2 \) or \( y = (x + 2)^2 \), the "arms" of the parabola will still open upward. This consistency in shape is essential for recognizing how simple transformations can affect the positioning of a graph while preserving its fundamental qualities.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad