Pregunta
upstudy study bank question image url

Question Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of \( f(x)=x+4 \) below by the \( x \)-axis over the interval \( [1,4] \) about the line \( y=-2 \). Enter an exact value in terms of \( \pi \).

Ask by Rogers Watson. in the United States
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( 207\pi \).

Solución

To find the volume of the solid of revolution formed by revolving the region bounded above by \( f(x) = x + 4 \) and below by the \( x \)-axis over the interval \([1, 4]\) about the line \( y = -2 \), we'll use the **washer method**. ### Step-by-Step Solution: 1. **Identify the Radii:** - **Outer Radius (\( R \))**: The distance from the curve \( f(x) = x + 4 \) to the line \( y = -2 \): \[ R = (x + 4) - (-2) = x + 6 \] - **Inner Radius (\( r \))**: The distance from the \( x \)-axis (\( y = 0 \)) to the line \( y = -2 \): \[ r = 0 - (-2) = 2 \] 2. **Volume of a Washer:** The volume \( dV \) of a washer with thickness \( dx \) is: \[ dV = \pi \left(R^2 - r^2\right) dx = \pi \left((x + 6)^2 - 2^2\right) dx = \pi \left((x + 6)^2 - 4\right) dx \] 3. **Integrate Over the Interval \([1, 4]\):** \[ V = \pi \int_{1}^{4} \left((x + 6)^2 - 4\right) dx \] Expand and simplify the integrand: \[ (x + 6)^2 - 4 = x^2 + 12x + 36 - 4 = x^2 + 12x + 32 \] Now integrate: \[ V = \pi \left[ \frac{x^3}{3} + 6x^2 + 32x \right]_{1}^{4} \] Evaluate the definite integral: \[ V = \pi \left( \left(\frac{4^3}{3} + 6 \cdot 4^2 + 32 \cdot 4\right) - \left(\frac{1^3}{3} + 6 \cdot 1^2 + 32 \cdot 1\right) \right) \] Simplify the calculations: \[ V = \pi \left( \left(\frac{64}{3} + 96 + 128\right) - \left(\frac{1}{3} + 6 + 32\right) \right) = \pi \left(\frac{736}{3} - \frac{115}{3}\right) = \pi \cdot \frac{621}{3} = 207\pi \] ### Final Answer: The volume is \( 207\pi \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of the solid of revolution formed by revolving the region bounded by \( f(x) = x + 4 \) and the \( x \)-axis over the interval \([1, 4]\) about the line \( y = -2 \), we can use the washer method. First, we determine the outer radius \( R \) and the inner radius \( r \): 1. The upper curve is \( f(x) = x + 4 \). 2. The distance from \( y = -2 \) to \( y = f(x) \) (outer radius) is given by: \[ R(x) = (x + 4) - (-2) = x + 6 \] 3. The distance from \( y = -2 \) to the \( x \)-axis (inner radius) is: \[ r(x) = 0 - (-2) = 2 \] Next, we set up the volume integral: \[ V = \pi \int_{1}^{4} \left( R(x)^2 - r(x)^2 \right) \, dx = \pi \int_{1}^{4} \left( (x + 6)^2 - (2)^2 \right) \, dx \] Calculating the squares: \[ R(x)^2 = (x + 6)^2 = x^2 + 12x + 36 \] \[ r(x)^2 = 2^2 = 4 \] Now substitute back into the volume integral: \[ V = \pi \int_{1}^{4} (x^2 + 12x + 36 - 4) \, dx = \pi \int_{1}^{4} (x^2 + 12x + 32) \, dx \] Integrating term by term: \[ V = \pi \left[ \frac{x^3}{3} + 6x^2 + 32x \right]_{1}^{4} \] Calculating at the bounds: 1. Upper bound at \( x = 4 \): \[ \frac{4^3}{3} + 6(4^2) + 32(4) = \frac{64}{3} + 6(16) + 128 = \frac{64}{3} + 96 + 128 = \frac{64}{3} + \frac{288}{3} + \frac{384}{3} = \frac{836}{3} \] 2. Lower bound at \( x = 1 \): \[ \frac{1^3}{3} + 6(1^2) + 32(1) = \frac{1}{3} + 6 + 32 = \frac{1}{3} + \frac{18}{3} + \frac{96}{3} = \frac{115}{3} \] Now subtract: \[ V = \pi \left( \frac{836}{3} - \frac{115}{3} \right) = \pi \left( \frac{721}{3} \right) = \frac{721\pi}{3} \] So, the volume of the solid of revolution is: \[ \frac{721\pi}{3} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad