Find the solution set. Then indicate whether the equation is conditional, an identity, or a contradiction. \( 3(y+8)-8(3 y-4)=-21 y+4 \) Select the correct choice below and fill in any answer boxes present in your choice. A. The solution set is \( \} \). B. The solution is the set of all real numbers. C. The solution is the empty set.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the equation \( 3(y+8)-8(3y-4)=-21y+4 \), we first expand both sides: 1. Distributing on the left side: \[ 3y + 24 - 24y + 32 = -21y + 4 \] This simplifies to: \[ -21y + 56 = -21y + 4 \] 2. Now, we isolate the variables: \[ 56 \neq 4 \] This means we have a false statement. Since we have reached an inconsistency, the equation does not hold true for any value of \( y \). Therefore, the solution set is the empty set, indicating that this equation is a contradiction. So the correct choice is: C. The solution is the empty set.