Pregunta
upstudy study bank question image url

Random Variables and Distributions
Normal distribution: Finding a probability, basic
vs
Kennedce
Suppose that the antenna lengths of woodlice are approximately normally distributed with a mean of 0.25 inches and a standard deviation of 0.05 inches. What proportion of woodlice have antenna lengths that are more than 0.23 inches? Round your answer to at least four decimal places.

Ask by Kelley Bates. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Approximately 0.6554 of woodlice have antenna lengths greater than 0.23 inches.

Solución

  1. We are given that the antenna lengths of woodlice follow a normal distribution with mean inches and standard deviation inches. Let represent the antenna length, so .
  2. We need to find the probability that a woodlouse has an antenna length greater than 0.23 inches, i.e., .
  3. To solve this, we standardize the variable using the formula for the standard normal variable :
  4. Substitute , , and :
  5. The probability now becomes:
  6. Using the symmetry of the standard normal distribution, we know:
  7. From the standard normal distribution table, we find:
  8. Therefore, the proportion of woodlice with antenna lengths more than 0.23 inches is approximately:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the proportion of woodlice with antenna lengths more than 0.23 inches, we first convert the length to a z-score using the formula: . Here, , , and . So, . Using standard normal distribution tables or a calculator, we find . Therefore, the probability of antenna lengths more than 0.23 inches is . Rounded, that gives us approximately 0.6554.
For a bit of historical context, the normal distribution was first introduced by the mathematician Carl Friedrich Gauss in the early 19th century. He used it to describe the distribution of errors in astronomical observations. This “bell curve” beautifully models various real-world phenomena, from heights of individuals to measurement errors, making it a fundamental pillar of statistics!
If you’re venturing deeper into this topic, consider exploring the Central Limit Theorem (CLT). This theorem states that the means of sufficiently large random samples from a population will be approximately normally distributed, regardless of the original population’s distribution. It’s a game-changer in statistics, as it allows researchers to infer properties about populations even when they’re dealing with non-normal data!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad