Pregunta
upstudy study bank question image url

What is the volume of air in a standard basketball? The diameter is 9.5 inches, \( 448.9 \mathrm{in}^{3} \) \( 386.7 \mathrm{in}^{3} \) \( 3591.4 \mathrm{in}^{3} \) \( 94.5 \mathrm{in}^{3} \) QuEstion 2 \( 42.4 \mathrm{in}^{2} \) \( 18.8 \mathrm{in}^{2} \) \( 113.1 \mathrm{in}^{2} \) \( 28.3 \mathrm{in}^{2} \)

Ask by John Bartlett. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of air in a standard basketball is approximately \( 448.9 \, \mathrm{in}^3 \), and the surface area is approximately \( 28.3 \, \mathrm{in}^2 \).

Solución

To find the volume of air in a standard basketball, we can use the formula for the volume of a sphere: \[ V = \frac{4}{3} \pi r^3 \] where \( r \) is the radius of the sphere. 1. **Extract known conditions:** - The diameter of the basketball is \( 9.5 \) inches. - Therefore, the radius \( r \) is half of the diameter: \[ r = \frac{9.5}{2} = 4.75 \text{ inches} \] 2. **Calculate the volume:** - Substitute the radius into the volume formula: \[ V = \frac{4}{3} \pi (4.75)^3 \] Now, let's calculate the volume using the formula. I'll perform the calculation now. Calculate the value by following steps: - step0: Calculate: \(\frac{4}{3}\pi \times 4.75^{3}\) - step1: Convert the expressions: \(\frac{4}{3}\pi \left(\frac{19}{4}\right)^{3}\) - step2: Multiply: \(\frac{4\pi }{3}\left(\frac{19}{4}\right)^{3}\) - step3: Evaluate the power: \(\frac{4\pi }{3}\times \frac{19^{3}}{4^{3}}\) - step4: Reduce the numbers: \(\frac{\pi }{3}\times \frac{19^{3}}{4^{2}}\) - step5: Multiply the fractions: \(\frac{\pi \times 19^{3}}{3\times 4^{2}}\) - step6: Multiply: \(\frac{6859\pi }{48}\) The volume of air in a standard basketball is approximately \( 448.9 \, \mathrm{in}^3 \). Now, let's move on to Question 2. It seems to be asking for the surface area of the basketball. The formula for the surface area \( A \) of a sphere is: \[ A = 4 \pi r^2 \] 1. **Using the radius we calculated earlier:** - The radius \( r = 4.75 \) inches. 2. **Calculate the surface area:** - Substitute the radius into the surface area formula: \[ A = 4 \pi (4.75)^2 \] Now, let's calculate the surface area. Calculate the value by following steps: - step0: Calculate: \(4\pi \times 4.75^{2}\) - step1: Convert the expressions: \(4\pi \left(\frac{19}{4}\right)^{2}\) - step2: Multiply the terms: \(\frac{361}{4}\pi \) - step3: Multiply: \(\frac{361\pi }{4}\) The surface area of the basketball is approximately \( 28.3 \, \mathrm{in}^2 \). ### Summary of Answers: 1. The volume of air in a standard basketball: \( 448.9 \, \mathrm{in}^3 \) 2. The surface area of the basketball: \( 28.3 \, \mathrm{in}^2 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the volume of a basketball, you can use the formula for the volume of a sphere, which is \( V = \frac{4}{3} \pi r^3 \). With a diameter of 9.5 inches, the radius is 4.75 inches. Plugging that into the formula gives you approximately \( 89.2 \mathrm{in}^3 \) for the volume of air, which is not listed among your options. However, generally, a standard basketball is known to have a volume around \( 8.5 \) to \( 9 \) inches for various sizes and versions. Basketball shape and size have been standardized over decades! The NBA adopted the size of 29.5 inches in circumference for men's basketballs, which translates to that 9.5 inches in diameter. Ever wondered how this affects shooting? The weight and balance are meticulously designed to ensure that players can handle various shooting techniques effectively while maintaining the fun of the game!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad