8 points] If \( A \) and \( B \) are digits such that \( \overline{A 149 B} \) is divisible by 72 , find the value of the product \( A \cdot B \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine the values of digits \( A \) and \( B \) such that the number \( \overline{A149B} \) is divisible by 72, we need to ensure that it meets the criteria for divisibility by both 8 and 9, since \( 72 = 8 \times 9 \). **Step 1: Check divisibility by 8.** For a number to be divisible by 8, its last three digits must form a number that is divisible by 8. The last three digits in this case are \( 49B \). We will check values of \( B \) from 0 to 9: - If \( B = 0 \): \( 490 \div 8 = 61.25 \) (not divisible) - If \( B = 1 \): \( 491 \div 8 = 61.375 \) (not divisible) - If \( B = 2 \): \( 492 \div 8 = 61.5 \) (not divisible) - If \( B = 3 \): \( 493 \div 8 = 61.625 \) (not divisible) - If \( B = 4 \): \( 494 \div 8 = 61.75 \) (not divisible) - If \( B = 5 \): \( 495 \div 8 = 61.875 \) (not divisible) - If \( B = 6 \): \( 496 \div 8 = 62 \) (divisible!) - If \( B = 7 \): \( 497 \div 8 = 62.125 \) (not divisible) - If \( B = 8 \): \( 498 \div 8 = 62.25 \) (not divisible) - If \( B = 9 \): \( 499 \div 8 = 62.375 \) (not divisible) Thus, \( B \) must be \( 6 \) for \( A149B \) to be divisible by 8. **Step 2: Check divisibility by 9.** A number is divisible by 9 if the sum of its digits is divisible by 9. The sum of the digits of \( \overline{A1496} \) is: \[ A + 1 + 4 + 9 + 6 = A + 20 \] To find \( A \), we need \( A + 20 \) to be divisible by 9. Let's check the values \( A \) can take (digits from 0 to 9): - If \( A = 0 \): \( 0 + 20 = 20 \) (not divisible by 9) - If \( A = 1 \): \( 1 + 20 = 21 \) (divisible by 9!) - If \( A = 2 \): \( 2 + 20 = 22 \) (not divisible by 9) - If \( A = 3 \): \( 3 + 20 = 23 \) (not divisible by 9) - If \( A = 4 \): \( 4 + 20 = 24 \) (divisible by 9!) - If \( A = 5 \): \( 5 + 20 = 25 \) (not divisible by 9) - If \( A = 6 \): \( 6 + 20 = 26 \) (not divisible by 9) - If \( A = 7 \): \( 7 + 20 = 27 \) (divisible by 9!) - If \( A = 8 \): \( 8 + 20 = 28 \) (not divisible by 9) - If \( A = 9 \): \( 9 + 20 = 29 \) (not divisible by 9) The possible values for \( A \) that satisfy this condition are \( 1, 4, \) and \( 7 \). **Final Step: Calculate Product \( A \cdot B \).** With \( B = 6 \): - For \( A = 1 \): \( A \cdot B = 1 \cdot 6 = 6 \) - For \( A = 4 \): \( A \cdot B = 4 \cdot 6 = 24 \) - For \( A = 7 \): \( A \cdot B = 7 \cdot 6 = 42 \) Thus, the possible values for \( A \cdot B \) are \( 6, 24, \) and \( 42 \). Each is valid based on the digits used. Therefore, the final answer is: \[