Pregunta
upstudy study bank question image url

  1. Consider
    (a) Find the average rate of change of over the interval ]
    (b) Find the instantaneous rate of ehange of at by using first prineiples.
    © Determine and interpret your answer.
  2. Consider the function
    (a) Determine
    (b) Determine:
    (1)
    (3) the gradient of the tangent to at
    (4) the rate of change of at

Ask by Ramirez Williams. in South Africa
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  • Problem 2:
    • (a) Average rate of change over : 2
    • (b) Instantaneous rate of change at : 1
    • © Limit at : 5
  • Problem 3:
    • (a) Limit as of :
    • (b)
      • :
      • Gradient at :
      • Rate of change at :

Solución

Let’s solve the problems step by step.

Problem 2

(a) Find the average rate of change of over the interval

The average rate of change of a function over the interval is given by the formula:
For , we need to calculate and :
  1. Calculate :
  2. Calculate :
Now, substitute these values into the average rate of change formula:

(b) Find the instantaneous rate of change of at using first principles

The instantaneous rate of change at a point is given by the limit:
For :
  1. Calculate :
  2. Now, substitute into the limit:

© Determine

  1. Calculate :
  2. Calculate :
  3. Substitute into the limit:

Problem 3

(a) Determine

For :
  1. Calculate :
  2. Substitute into the limit:

(b) Determine:

  1. :
  2. The gradient of the tangent to at :
  3. The rate of change of at :

Summary of Results

  • Average rate of change over :
  • Instantaneous rate of change at :
  • Limit for :
  • :
  • Gradient at :
  • Rate of change at :

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the average rate of change of over the interval , you can use the formula .
Calculating and , the average rate of change becomes . This tells you how steeply the function is rising between these two points!
Now, for the instantaneous rate of change at using first principles, we need to find the limit:
This gives you the slope of the tangent line at that point, indicating the function is increasing at .
For the limit , we find .
Then, evaluate .
The limit simplifies to:
This result is the derivative at providing the slope of the tangent at that point.
For the function , to find , you similarly expand to get:
leading to as the derivative, reflecting the slope of the tangent.
Next, for , plug into the expression to yield the value directly.
To find the gradient at , plug into .
Finally, using the same derivative approach at , . This provides the rate of change at that particular point, giving insights into the function’s behavior!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad