8. In \( \triangle P Q R \), if \( m \angle P=x-12, m \angle Q=5 x-27 \), and \( m \angle R=2 x+3 \), find \( x \) and the measure of each angle.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
In triangle \( PQR \), the sum of the angles is always \( 180^\circ \). Therefore, we can set up the equation: \[ m \angle P + m \angle Q + m \angle R = 180^\circ \] Substituting the given angles: \[ (x - 12) + (5x - 27) + (2x + 3) = 180 \] Combining like terms: \[ x - 12 + 5x - 27 + 2x + 3 = 180 \] This simplifies to: \[ 8x - 36 = 180 \] Now, adding 36 to both sides gives: \[ 8x = 216 \] Dividing by 8: \[ x = 27 \] Now that we have \( x \), we can find the measures of the angles: \[ m \angle P = x - 12 = 27 - 12 = 15^\circ \] \[ m \angle Q = 5x - 27 = 5(27) - 27 = 135 - 27 = 108^\circ \] \[ m \angle R = 2x + 3 = 2(27) + 3 = 54 + 3 = 57^\circ \] Thus, the measures of the angles are: - \( m \angle P = 15^\circ \) - \( m \angle Q = 108^\circ \) - \( m \angle R = 57^\circ \) In summary, \( x = 27 \), and the angles of triangle \( PQR \) are \( 15^\circ \), \( 108^\circ \), and \( 57^\circ \).