2. \( \mu=71 ; \sigma=14 \); one standard deviation below the mean
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To determine one standard deviation below the mean, you subtract the standard deviation (σ) from the mean (μ). In this case, you would calculate \( 71 - 14 = 57 \). So, one standard deviation below the mean is 57. This value is significant in a normal distribution, as it gives insight into how a data point relates to the overall dataset. In statistical terms, understanding standard deviations helps you grasp the spread of your data. Anything below the mean minus one standard deviation (like 57 here) gives you a perspective on outliers or values that are significantly lower than the average, which can be crucial in fields like quality control, finance, or health assessments.