\( x-4 ; x+2 ; 3 x+1 ; \ldots \) are the first three terms of a geometric sequence. Determine the sequence if \( x \) is positive. \( t+1 ; 1-t ; 1-5 t ; \ldots \) are the first three terms of a geometric sequence. (a) Determine the numerical value of \( t \) where \( t \neq 0 \). b) Determine the sequence. d) Determine the 10 th term. d) Which term equals \( 10 \frac{2}{3} \) ?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine the terms in the sequences you provided, we first need to establish the common properties of a geometric sequence. For any three consecutive terms \( a, b, c \) of a geometric sequence, the following relationship holds true: \( b^2 = ac \). **For the first sequence \( x-4, x+2, 3x+1 \):** 1. Using the relationship: \[(x+2)^2 = (x-4)(3x+1)\] 2. Expanding both sides: \[(x^2 + 4x + 4) = (3x^2 - 12x + x - 4)\] \[x^2 + 4x + 4 = 3x^2 - 11x - 4\] 3. Rearranging terms yields: \[0 = 2x^2 - 15x - 8\] 4. Solving this quadratic using the quadratic formula: \[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{15 \pm \sqrt{(-15)^2 - 4(2)(-8)}}{2(2)}\] \[x = \frac{15 \pm \sqrt{225 + 64}}{4} = \frac{15 \pm 17}{4}\] 5. This leads to: \[x = 8 \quad \text{(selecting only the positive root)}\] Now substituting \( x = 8 \): - The sequence is \( 8-4 = 4, \; 8+2 = 10, \; 3(8)+1 = 25 \). - Thus, the sequence is \( 4, 10, 25, \ldots \). **For the second sequence \( t+1, 1-t, 1-5t \):** 1. Using the geometric property: \[(1-t)^2 = (t+1)(1-5t)\] 2. Expanding both sides: \[(1 - 2t + t^2) = (t + 1 - 5t^2 - 5t)\] \[1 - 2t + t^2 = -4t^2 - 4t + 1\] 3. Rearranging gives: \[5t^2 + 2t = 0\] 4. factored gives: \[t(5t + 2) = 0\] 5. Thus, \( t = 0 \) or \( t = -\frac{2}{5} \), but since \( t \neq 0 \), we choose \( t = -\frac{2}{5} \). Now substituting \( t = -\frac{2}{5} \): - The sequence is: - \( t+1 = \frac{3}{5}, \; 1-t = \frac{7}{5}, \; 1-5t = 5 \). - So, the sequence becomes \( \frac{3}{5}, \frac{7}{5}, 5, \ldots \). **Finding the \( 10^\text{th} \) term and when it equals \( 10 \frac{2}{3} \):** 1. The common ratio for the second sequence can be calculated: \[r = \frac{1-t}{t+1} = \frac{\frac{7}{5}}{\frac{3}{5}} = \frac{7}{3}\] 2. General term equation of the second sequence is: \[a_n = a_1 \cdot r^{n-1}\] where \( a_1 = \frac{3}{5} \). 3. Finding the \( 10^\text{th} \) term: \[a_{10} = \left(\frac{3}{5}\right) \left(\frac{7}{3}\right)^{9} = \frac{3}{5} \cdot \frac{7^9}{3^9}\] \[ = \frac{7^9}{5 \cdot 3^8}\] 4. Setting \( a_n = 10 \frac{2}{3} = \frac{32}{3} \) to solve for \( n \): \[\frac{3}{5} \left(\frac{7}{3}\right)^{n-1} = \frac{32}{3}\] Rearranging gives: \[\left(\frac{7}{3}\