Pregunta
upstudy study bank question image url

Points: 0 of 1 Save Multiple-choice questions each have four possible answers ( \( a, b, c, d \) ), one of which is correct. Assume that you guess the answers to three such questions. a. Use the multiplication rule to find \( \mathrm{P}(\mathrm{CWC}) \), where C denotes a correct answer and W denotes a wrong answer. \[ P(C W C)=\frac{3}{64} \text { (Type an exact answer.) } \] b. Beginning with CWC, make a complete list of the different possible arrangements of two correct answers and one wrong answer, then find the probability for each entry in the list. \[ \begin{array}{l} \mathrm{P}(\mathrm{CWC})-\text { see above } \\ \mathrm{P}(\mathrm{WCC})=0.046875 \\ \mathrm{P}(\mathrm{CCW})=0.046875 \end{array} \] (Type exact answers.) c. Based on the preceding results, what is the probability of getting exactly two correct answers when three guesses are made? \( \square \) (Type an exact answer.)

Ask by Hammond Turner. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of getting exactly two correct answers when guessing three multiple-choice questions is \( \frac{9}{64} \).

Solución

To solve the problem, we will follow the steps outlined in the question. ### Part a: Calculate \( P(CWC) \) 1. **Understanding the Problem**: We have three questions, each with four possible answers (a, b, c, d). The probability of guessing a correct answer (C) is \( \frac{1}{4} \), and the probability of guessing a wrong answer (W) is \( \frac{3}{4} \). 2. **Using the Multiplication Rule**: The probability of a specific sequence of answers can be calculated by multiplying the probabilities of each individual answer. For \( P(CWC) \): \[ P(CWC) = P(C) \times P(W) \times P(C) = \left(\frac{1}{4}\right) \times \left(\frac{3}{4}\right) \times \left(\frac{1}{4}\right) \] 3. **Calculating**: \[ P(CWC) = \frac{1}{4} \times \frac{3}{4} \times \frac{1}{4} = \frac{3}{64} \] Thus, the answer for part a is: \[ P(CWC) = \frac{3}{64} \] ### Part b: List Arrangements and Calculate Probabilities 1. **Arrangements of Two Correct and One Wrong**: The different arrangements of two correct answers (C) and one wrong answer (W) are: - CWC - WCC - CCW 2. **Calculating Probabilities**: - We already calculated \( P(CWC) = \frac{3}{64} \). - For \( P(WCC) \): \[ P(WCC) = P(W) \times P(C) \times P(C) = \left(\frac{3}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) = \frac{3}{64} \] - For \( P(CCW) \): \[ P(CCW) = P(C) \times P(C) \times P(W) = \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{3}{4}\right) = \frac{3}{64} \] Thus, the probabilities for part b are: \[ \begin{array}{l} P(CWC) = \frac{3}{64} \\ P(WCC) = \frac{3}{64} \\ P(CCW) = \frac{3}{64} \end{array} \] ### Part c: Probability of Getting Exactly Two Correct Answers 1. **Summing the Probabilities**: The total probability of getting exactly two correct answers is the sum of the probabilities of the arrangements: \[ P(\text{exactly 2 correct}) = P(CWC) + P(WCC) + P(CCW) \] \[ P(\text{exactly 2 correct}) = \frac{3}{64} + \frac{3}{64} + \frac{3}{64} = \frac{9}{64} \] Thus, the answer for part c is: \[ P(\text{exactly 2 correct}) = \frac{9}{64} \] ### Final Answers - a. \( P(CWC) = \frac{3}{64} \) - b. \[ \begin{array}{l} P(CWC) = \frac{3}{64} \\ P(WCC) = \frac{3}{64} \\ P(CCW) = \frac{3}{64} \end{array} \] - c. \( P(\text{exactly 2 correct}) = \frac{9}{64} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability of getting exactly two correct answers when guessing on three multiple-choice questions (where each question has four possible answers), we first identify the different arrangements of two correct answers (C) and one wrong answer (W). The possible arrangements are: CWC, WCC, and CCW. Now we add the individual probabilities: \[ \text{P(exactly 2 correct)} = \text{P(CWC)} + \text{P(WCC)} + \text{P(CCW)} \] Given: - \( \text{P(CWC)} = \frac{3}{64} \) - \( \text{P(WCC)} = 0.046875 \) (which is also \( \frac{3}{64} \)) - \( \text{P(CCW)} = 0.046875 \) (which is the same as above) So, we can now add them all together: \[ \text{P(exactly 2 correct)} = \frac{3}{64} + \frac{3}{64} + \frac{3}{64} = \frac{9}{64} \] Thus, the probability of getting exactly two correct answers when three guesses are made is: \[ \frac{9}{64} \]

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad