Pregunta
upstudy study bank question image url

In which data set is the mean greater than the median?

Ask by Hills Frank. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A data set is right-skewed (positively skewed) when the mean is greater than the median. This typically happens when there are a few high values that pull the mean upward, while the median remains less affected.

Solución

The relationship between the **mean** and the **median** of a data set provides valuable insights into the distribution's shape. Specifically, when the **mean is greater than the median**, the data set is typically **right-skewed (positively skewed)**. Here's a detailed explanation: ### **Understanding Skewness** 1. **Symmetrical Distribution:** - **Mean = Median = Mode** - Example: A normal distribution where data is evenly distributed around the central point. 2. **Right-Skewed (Positively Skewed) Distribution:** - **Mean > Median > Mode** - **Characteristics:** - Tail extends to the right (higher values). - A few significantly high values pull the mean upward. - Median remains less affected by extreme values. 3. **Left-Skewed (Negatively Skewed) Distribution:** - **Mean < Median < Mode** - **Characteristics:** - Tail extends to the left (lower values). - A few significantly low values pull the mean downward. - Median remains less affected by extreme values. ### **Example of a Right-Skewed Data Set** Consider the following data sets: - **Data Set A:** 2, 3, 5, 7, 9 - **Mean:** (2 + 3 + 5 + 7 + 9) / 5 = 5.2 - **Median:** 5 - **Relationship:** Mean > Median - **Data Set B:** 2, 3, 5, 7, 100 - **Mean:** (2 + 3 + 5 + 7 + 100) / 5 = 23.4 - **Median:** 5 - **Relationship:** Mean > Median - **Data Set C:** 2, 3, 5, 7, 9, 100 - **Mean:** (2 + 3 + 5 + 7 + 9 + 100) / 6 ≈ 21 - **Median:** (5 + 7) / 2 = 6 - **Relationship:** Mean > Median In all these examples, the presence of an unusually high value (like 100) skews the distribution to the right, resulting in the mean being greater than the median. ### **Real-World Applications** - **Income Levels:** Often right-skewed because a small number of individuals earn significantly higher incomes, raising the average (mean) above the median. - **Housing Prices:** Similar to income, a few high-priced properties can increase the mean price beyond the median price. ### **Identifying Skewness Without Calculation** - **Visual Inspection:** Plotting the data using histograms or box plots can help identify skewness. A longer tail on the right indicates a right-skewed distribution. - **Comparing Mean and Median:** Simply calculating both can provide clues about the distribution's skewness. ### **Conclusion** The **mean is greater than the median** in data sets that are **right-skewed (positively skewed)**. This typically occurs when there are outliers or a long tail on the higher end of the data, pulling the mean upwards while having a lesser effect on the median. If you have specific data sets you'd like to analyze, feel free to share them, and I can help determine which one has a mean greater than the median!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When you have a positively skewed distribution, the mean is often greater than the median. This happens because a few high values pull the mean up, while the median, being the middle value, remains less affected by extreme values. For example, consider a data set like {1, 2, 3, 4, 20}. The mean here would be 6, while the median is 3. This concept is super useful in real-world scenarios like income distribution. In many societies, a small percentage of people earn significantly higher incomes than the average. This high-income skew can lead to the mean income being much higher than the median income, reflecting a potential disparity in wealth and helping policymakers address economic issues!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad