(c) Two large numbers are writte \( 2^{10} \times 3^{15} \times 5^{20} \times 7 \) \( 2^{15} \times 3^{10} \times 5^{20} \times 11 \) Write down the LCM of thes
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the least common multiple (LCM) of the two numbers \( 2^{10} \times 3^{15} \times 5^{20} \times 7 \) and \( 2^{15} \times 3^{10} \times 5^{20} \times 11 \), we take the highest power of each prime factor present in either number. - For \(2\), the maximum power is \(2^{15}\). - For \(3\), the maximum power is \(3^{15}\). - For \(5\), the maximum power is \(5^{20}\). - For \(7\), it's \(7^{1}\) (only present in the first number). - For \(11\), it's \(11^{1}\) (only present in the second number). Combining these, the LCM is: \[ LCM = 2^{15} \times 3^{15} \times 5^{20} \times 7^1 \times 11^1 \] This expression captures the essence of both numbers while ensuring that all prime factors are included at their highest powers!