Pregunta
upstudy study bank question image url

tics Mathematics Grade 12 Learner Material What is the value of \( m \) for which: \[ \sum_{k=1}^{m} 5(3)^{k-1}=65 \] Consider the sequence:

Ask by Chang Gonzalez. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( m = 3 \)

Solución

To determine the value of \( m \) that satisfies the equation: \[ \sum_{k=1}^{m} 5 \cdot 3^{k-1} = 65 \] we can recognize that this sum represents a **geometric series**. Let's break down the solution step-by-step. ### Step 1: Identify the Components of the Geometric Series A geometric series has the general form: \[ S_m = a \cdot \frac{r^m - 1}{r - 1} \] where: - \( S_m \) is the sum of the first \( m \) terms, - \( a \) is the first term, - \( r \) is the common ratio, - \( m \) is the number of terms. For the given series: \[ \sum_{k=1}^{m} 5 \cdot 3^{k-1} \] - **First Term (\( a \))**: When \( k = 1 \), \[ a = 5 \cdot 3^{1-1} = 5 \cdot 3^{0} = 5 \cdot 1 = 5 \] - **Common Ratio (\( r \))**: The ratio between successive terms is \( 3 \) since each term is multiplied by \( 3 \) to get the next term. ### Step 2: Plug the Values into the Sum Formula Using the formula for the sum of a geometric series: \[ S_m = a \cdot \frac{r^m - 1}{r - 1} \] Substitute the known values: \[ 65 = 5 \cdot \frac{3^m - 1}{3 - 1} \] \[ 65 = 5 \cdot \frac{3^m - 1}{2} \] ### Step 3: Solve for \( m \) 1. **Multiply both sides by 2 to eliminate the denominator:** \[ 65 \times 2 = 5 \cdot (3^m - 1) \] \[ 130 = 5 \cdot (3^m - 1) \] 2. **Divide both sides by 5:** \[ \frac{130}{5} = 3^m - 1 \] \[ 26 = 3^m - 1 \] 3. **Add 1 to both sides:** \[ 26 + 1 = 3^m \] \[ 27 = 3^m \] 4. **Find the value of \( m \) such that \( 3^m = 27 \):** Since \( 3^3 = 27 \), \[ m = 3 \] ### Conclusion The value of \( m \) that satisfies the equation is: \[ \boxed{3} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for \( m \), we can recognize this as a geometric series where the first term \( a = 5 \) and the common ratio \( r = 3 \). The sum of the first \( m \) terms of a geometric series is given by: \[ S_m = a \frac{r^m - 1}{r - 1} \] Substituting the values, we have: \[ 65 = 5 \frac{3^m - 1}{3 - 1} \] Simplifying this gives: \[ 65 = \frac{5(3^m - 1)}{2} \] Multiplying through by 2: \[ 130 = 5(3^m - 1) \] Dividing by 5 results in: \[ 26 = 3^m - 1 \] Thus: \[ 3^m = 27 \] Since \( 27 = 3^3 \), we find: \[ m = 3 \] Now let's look at some interesting context behind sequences and series! This type of series finds notable applications in finance, especially in calculating the future value of investments given a consistent rate of return. If you were to invest a certain amount that grows in a compounded fashion (like your sequence), understanding how these terms add up makes a difference in predicting how much you'll have in the future. When working with geometric series, one common mistake is forgetting to correctly identify the first term and the common ratio. Ensuring the accurate input of these values when using the sum formula is crucial – a simple slip can lead to incorrect conclusions. Always double-check the initial conditions before diving into calculations!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad