Pregunta
Find the trigonometric integral. (Use
for the constant of integration.)
Ask by Little Reid. in the United States
Mar 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The integral of
with respect to
is
.
Solución
Calculate the integral
.
Evaluate the integral by following steps:
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
- step1: Evaluate the integral:
- step2: Simplify the expression:
- step3: Add the constant of integral C:
The trigonometric integral ofis , where is the constant of integration.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To solve the integral
, we can use integration by substitution.
Let
. Then, the derivative of
is:
Since
and
, we can rewrite our integral as follows:
This integral can be a bit complicated but an alternative way is to integrate by using the identity
and separate out parts of the integral:
Now let’s integrate by parts. Let
and
. This gives us:
The integration steps involve some manipulation which results in:
So the final result is:
Thus, the integral evaluates to:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium