Pregunta
upstudy study bank question image url

ai) Paige walks to the park \( \frac{2}{3} \) mile away, It takes her 16 minutes to get there. Paige wants to know her speed in miles per minute. \[ \begin{array}{l}\frac{2}{3} \\ \text { 4) What is Paige's speed in miles per minute? Simplify the expression. } \\ \qquad \begin{array}{l}16\end{array} 16\end{array} \]

Ask by Young Evans. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Paige's speed is \( \frac{1}{24} \) miles per minute.

Solución

To determine Paige's speed in miles per minute, you can use the formula for speed: \[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \] **Given:** - **Distance** = \( \frac{2}{3} \) miles - **Time** = 16 minutes **Calculation:** \[ \text{Speed} = \frac{\frac{2}{3} \text{ miles}}{16 \text{ minutes}} = \frac{2}{3} \div 16 \] Dividing by 16 is the same as multiplying by \( \frac{1}{16} \): \[ \frac{2}{3} \div 16 = \frac{2}{3} \times \frac{1}{16} = \frac{2 \times 1}{3 \times 16} = \frac{2}{48} \] Simplify the fraction by dividing both the numerator and the denominator by 2: \[ \frac{2}{48} = \frac{1}{24} \] **Answer:** Paige's speed is \( \frac{1}{24} \) miles per minute.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find Paige's speed in miles per minute, you simply divide the distance by the time. Since she walks \( \frac{2}{3} \) mile in 16 minutes, the calculation is: \[ \text{Speed} = \frac{\frac{2}{3}}{16} = \frac{2}{3} \times \frac{1}{16} = \frac{2}{48} = \frac{1}{24} \] Thus, Paige's speed is \( \frac{1}{24} \) miles per minute. Did you know that the concept of speed is deeply rooted in physics? The idea of measuring how fast something moves relative to time can be traced back to ancient civilizations like the Greeks. They were fascinated by the relationship between distance, time, and speed long before the formulas became routine in science classes! For anyone looking to understand speed better, real-world applications are everywhere! For instance, knowing miles per minute can help you plan your travel time. If you're driving or walking, estimating your speed helps you determine how long it will take to reach your destination, making it essential for travel plans, running schedules, or even just a leisurely stroll to the park!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad