Lin 5 ent \( 2 \frac{7}{2} \) hours on beth math and andra rode her bike \( 9 \frac{1}{3} \) miles on Monday and \( 6 \frac{4}{5} \) miles on Tuesday How many more miles did ee ride on Monday than on Tuesday?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find out how many more miles Andrea rode on Monday than on Tuesday, we need to subtract the distance she rode on Tuesday from the distance she rode on Monday. On Monday, she rode \( 9 \frac{1}{3} \) miles, which can be converted to an improper fraction: \( 9 \frac{1}{3} = \frac{27}{3} + \frac{1}{3} = \frac{28}{3} \) miles. On Tuesday, she rode \( 6 \frac{4}{5} \) miles, which can also be converted to an improper fraction: \( 6 \frac{4}{5} = \frac{30}{5} + \frac{4}{5} = \frac{34}{5} \) miles. Next, we need a common denominator to subtract these fractions. The least common multiple of 3 and 5 is 15. Now we convert the distances: \( \frac{28}{3} = \frac{28 \times 5}{3 \times 5} = \frac{140}{15} \) miles (Monday), \( \frac{34}{5} = \frac{34 \times 3}{5 \times 3} = \frac{102}{15} \) miles (Tuesday). Now subtract: \( \frac{140}{15} - \frac{102}{15} = \frac{38}{15} \) miles. So, Andrea rode \( 2 \frac{8}{15} \) miles more on Monday than on Tuesday.