Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 44 and standard deviation 5 . What is the probability that \( X \) is between 34 and 49 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Mathis Rojas. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 34 and 49 is **0.815**.

Solución

Given that \( X \) is normally distributed with a mean (\( \mu \)) of 44 and a standard deviation (\( \sigma \)) of 5, we want to find the probability that \( X \) falls between 34 and 49: \[ P(34 \leq X \leq 49) \] ### Applying the Empirical Rule (68-95-99.7 Rule) 1. **Identify the number of standard deviations from the mean:** - \( 34 \) is \( 44 - 2\sigma = 44 - 2 \times 5 = 34 \) (i.e., 2 standard deviations below the mean). - \( 49 \) is \( 44 + 1\sigma = 44 + 5 = 49 \) (i.e., 1 standard deviation above the mean). 2. **Use the Empirical Rule:** - **Within 1σ (\( 44 \pm 5 \)):** Approximately 68% of the data lies between 39 and 49. - **Within 2σ (\( 44 \pm 10 \)):** Approximately 95% of the data lies between 34 and 54. 3. **Calculate the desired probability:** - Probability from \( \mu - 2\sigma \) to \( \mu \): Approximately \( \frac{95\% + 68\%}{2} = 81.5\% \). Thus, the probability that \( X \) is between 34 and 49 is approximately **0.815** when rounded to the nearest thousandth. **Answer:** 0.815

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is between 34 and 49, we will use the \( 0.68-0.95-0.997 \) rule, also known as the empirical rule. 1. First, we calculate how many standard deviations 34 and 49 are from the mean \( \mu = 44 \). - For 34: \[ z_1 = \frac{34 - 44}{5} = \frac{-10}{5} = -2 \] - For 49: \[ z_2 = \frac{49 - 44}{5} = \frac{5}{5} = 1 \] 2. Now, using the empirical rule, we know: - About 68% of the data lies within 1 standard deviation (from \( \mu - 1\sigma \) to \( \mu + 1\sigma \)), which is between 39 and 49. - About 95% of the data lies within 2 standard deviations (from \( \mu - 2\sigma \) to \( \mu + 2\sigma \)), which is between 34 and 54. 3. Therefore, to find the probability that \( X \) is between 34 and 49, we find the area from 34 to 44 and from 44 to 49: - From 34 to 44 (which is half of the 95%): \( \frac{95\%}{2} = 47.5\% \) - From 44 to 49 (from 44 to 49 is half of the 68%): \( \frac{68\%}{2} = 34\% \) Combining these, we get \( 47.5\% + 34\% = 81.5\% \). Therefore, rounding to the nearest thousandth, the probability that \( X \) is between 34 and 49 is: \[ \text{Probability} = 0.815 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad