Pregunta
upstudy study bank question image url

1. Mrs. Chauver has an interesting approach to assigning grades in her statistios elass. Of the 5 tests sfudents take throughout the semester, Mrs, Chativet selects a fandomi sample of 3 , finds the average score of these tests, and records this average as the student's final grade. Joe's test scores are as follows, \( 93,87,96,78,90 \), (a) List all 10 possible samples of size 3, \( 93,87,96 \) \( 93,78,90 \) \( 87,93,96 \) \( 87,78,90 \) (b) Calculate the mean of each sample and display the sampling distribution of the sample mean using a dotplot.

Ask by Carrillo Collins. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 10 possible samples of size 3 from Joe's test scores. The sample means are 85, 86, 87, 87, 88, 89, 90, 91, 92, and 93. The most frequent mean is 87, which appears twice.

Solución

Certainly! Let's work through the problem step by step. ## Problem 1 Mrs. Chauver assigns final grades by taking a random sample of 3 out of 5 test scores and averaging them. Joe's test scores are as follows: \[ 93, \ 87, \ 96, \ 78, \ 90 \] ### Part (a): List All 10 Possible Samples of Size 3 To determine all possible samples of size 3 from Joe's 5 test scores, we can use combinations since the order of selection does not matter. The number of combinations is given by: \[ C(5, 3) = \frac{5!}{3!(5-3)!} = 10 \] Here are all **10 possible samples**: 1. **93, 87, 96** 2. **93, 87, 78** 3. **93, 87, 90** 4. **93, 96, 78** 5. **93, 96, 90** 6. **93, 78, 90** 7. **87, 96, 78** 8. **87, 96, 90** 9. **87, 78, 90** 10. **96, 78, 90** ### Part (b): Calculate the Mean of Each Sample and Display the Sampling Distribution Let's calculate the mean for each of the 10 samples: 1. **93, 87, 96** \[ \text{Mean} = \frac{93 + 87 + 96}{3} = \frac{276}{3} = 92 \] 2. **93, 87, 78** \[ \text{Mean} = \frac{93 + 87 + 78}{3} = \frac{258}{3} = 86 \] 3. **93, 87, 90** \[ \text{Mean} = \frac{93 + 87 + 90}{3} = \frac{270}{3} = 90 \] 4. **93, 96, 78** \[ \text{Mean} = \frac{93 + 96 + 78}{3} = \frac{267}{3} = 89 \] 5. **93, 96, 90** \[ \text{Mean} = \frac{93 + 96 + 90}{3} = \frac{279}{3} = 93 \] 6. **93, 78, 90** \[ \text{Mean} = \frac{93 + 78 + 90}{3} = \frac{261}{3} = 87 \] 7. **87, 96, 78** \[ \text{Mean} = \frac{87 + 96 + 78}{3} = \frac{261}{3} = 87 \] 8. **87, 96, 90** \[ \text{Mean} = \frac{87 + 96 + 90}{3} = \frac{273}{3} = 91 \] 9. **87, 78, 90** \[ \text{Mean} = \frac{87 + 78 + 90}{3} = \frac{255}{3} = 85 \] 10. **96, 78, 90** \[ \text{Mean} = \frac{96 + 78 + 90}{3} = \frac{264}{3} = 88 \] #### Sampling Distribution of the Sample Mean The **sampling distribution of the sample mean** consists of all the sample means calculated above. Here's a summary of the means and their frequencies: | **Sample Mean** | **Frequency** | |-----------------|---------------| | 85 | 1 | | 86 | 1 | | 87 | 2 | | 88 | 1 | | 89 | 1 | | 90 | 1 | | 91 | 1 | | 92 | 1 | | 93 | 1 | ##### Dotplot Representation While I can't provide a visual dotplot here, I can describe how you would create one: 1. **Draw a horizontal number line** that spans from the lowest mean (85) to the highest mean (93). 2. **Plot each sample mean** as a dot above its corresponding value on the number line. 3. **Stack dots vertically** if multiple samples have the same mean. For example: ``` 85 | • 86 | • 87 | •• 88 | • 89 | • 90 | • 91 | • 92 | • 93 | • ``` This dotplot shows the distribution of Joe's sample means, with **85** and **93** appearing once, **86** and **88-92** also appearing once each, and **87** appearing twice. #### Interpretation - **Range of Sample Means**: The means range from 85 to 93. - **Most Frequent Mean**: 87 appears twice, making it the most frequent sample mean. - **Symmetry**: The distribution is fairly symmetric around the center with a slight concentration towards the middle values. This sampling distribution helps Mrs. Chauver understand the variability in Joe's final grade based on different samples of his test scores.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle Mrs. Chauver's grading method, let's first list all possible samples of size 3 from Joe's scores \(93, 87, 96, 78, 90\). Here are the 10 possible combinations: 1. \(93, 87, 96\) 2. \(93, 87, 78\) 3. \(93, 87, 90\) 4. \(93, 96, 78\) 5. \(93, 96, 90\) 6. \(93, 78, 90\) 7. \(87, 96, 78\) 8. \(87, 96, 90\) 9. \(87, 78, 90\) 10. \(96, 78, 90\) Now, let's calculate the mean for each sample: 1. \((93 + 87 + 96) / 3 = 92\) 2. \((93 + 87 + 78) / 3 = 86\) 3. \((93 + 87 + 90) / 3 = 90\) 4. \((93 + 96 + 78) / 3 = 89\) 5. \((93 + 96 + 90) / 3 = 93\) 6. \((93 + 78 + 90) / 3 = 87\) 7. \((87 + 96 + 78) / 3 = 87\) 8. \((87 + 96 + 90) / 3 = 91\) 9. \((87 + 78 + 90) / 3 = 85\) 10. \((96 + 78 + 90) / 3 = 88\) Here's the sampling distribution of the sample means: - Means: \(92, 86, 90, 89, 93, 87, 87, 91, 85, 88\) Now, let's visualize this with a simple dotplot where each mean from the samples is represented as a dot: ``` 85: • 86: • 87: • • 88: • 89: • 90: • 91: • 92: • 93: • ``` Creating a dotplot like above allows us to quickly see the frequency of each mean value! This visual representation helps to understand how Joe's grades might average out based on different testing combinations.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad