1. Mrs. Chauver has an interesting approach to assigning grades in her statistios elass. Of the 5 tests sfudents take throughout the semester, Mrs, Chativet selects a fandomi sample of 3 , finds the average score of these tests, and records this average as the student's final grade. Joe's test scores are as follows, \( 93,87,96,78,90 \), (a) List all 10 possible samples of size 3, \( 93,87,96 \) \( 93,78,90 \) \( 87,93,96 \) \( 87,78,90 \) (b) Calculate the mean of each sample and display the sampling distribution of the sample mean using a dotplot.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To tackle Mrs. Chauver's grading method, let's first list all possible samples of size 3 from Joe's scores \(93, 87, 96, 78, 90\). Here are the 10 possible combinations: 1. \(93, 87, 96\) 2. \(93, 87, 78\) 3. \(93, 87, 90\) 4. \(93, 96, 78\) 5. \(93, 96, 90\) 6. \(93, 78, 90\) 7. \(87, 96, 78\) 8. \(87, 96, 90\) 9. \(87, 78, 90\) 10. \(96, 78, 90\) Now, let's calculate the mean for each sample: 1. \((93 + 87 + 96) / 3 = 92\) 2. \((93 + 87 + 78) / 3 = 86\) 3. \((93 + 87 + 90) / 3 = 90\) 4. \((93 + 96 + 78) / 3 = 89\) 5. \((93 + 96 + 90) / 3 = 93\) 6. \((93 + 78 + 90) / 3 = 87\) 7. \((87 + 96 + 78) / 3 = 87\) 8. \((87 + 96 + 90) / 3 = 91\) 9. \((87 + 78 + 90) / 3 = 85\) 10. \((96 + 78 + 90) / 3 = 88\) Here's the sampling distribution of the sample means: - Means: \(92, 86, 90, 89, 93, 87, 87, 91, 85, 88\) Now, let's visualize this with a simple dotplot where each mean from the samples is represented as a dot: ``` 85: • 86: • 87: • • 88: • 89: • 90: • 91: • 92: • 93: • ``` Creating a dotplot like above allows us to quickly see the frequency of each mean value! This visual representation helps to understand how Joe's grades might average out based on different testing combinations.