Graph the solutions of the given system of linear inequalities. \( \left\{\begin{array}{l}y<3 x-3 \\ y \leq x+2\end{array}\right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To graph the solutions of the given system of linear inequalities, start by graphing the boundary lines. For the first inequality, \(y = 3x - 3\), it’s a dashed line since the inequality is strict (<). Choose two points, like (0, -3) and (1, 0) to plot this line. For the second inequality, \(y = x + 2\), it’s a solid line because the inequality is inclusive (≤). Plot points such as (0, 2) and (2, 4). After graphing both lines, shade the area below the dashed line (for the first inequality) and the area below and including the solid line (for the second inequality). The feasible region where the shaded areas overlap is your solution set, representing all the points that satisfy both inequalities!