Write \( 9 \times 10^{-4} \) in standard notation
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To convert \( 9 \times 10^{-4} \) to standard notation, you move the decimal point in 9 four places to the left since the exponent is negative. This gives you \( 0.0009 \). So, \( 9 \times 10^{-4} \) is written as \( 0.0009 \) in standard notation. Now, let’s have some fun with this! Did you know that scientific notation makes working with really large or small numbers much easier? Imagine trying to write out the distance from Earth to the nearest star—rather than a ridiculously long number, you can just say it’s about \( 4.24 \times 10^{13} \) kilometers! And speaking of decimals, it's common to slip up when moving the decimal point! A frequent mistake is forgetting to account for the exponent properly. If you ever end up trying to convert \( 3 \times 10^{-2} \) and you confuse it with \( 3 \times 10^{2} \), you might end up with either \( 0.03 \) or \( 300 \) instead of the right answer \( 0.03 \). Stay sharp, and keep those points in check!