Responder
**Conversions of Decimal to Binary:**
- **77** in binary is **1001101₂**
- **1144** in binary is **10001111000₂**
- **234** in binary is **11101010₂**
**Summary:**
| Decimal | Binary |
|---------|--------------|
| 77 | 1001101₂ |
| 1144 | 10001111000₂ |
| 234 | 11101010₂ |
If you need more examples or further assistance, feel free to ask!
Solución
### Lecture Topic: Computer Number Systems
#### **1. Convert the following decimal numbers (Base 10) into binary format (Base 2)**
---
##### **a. 77**
**Conversion Steps:**
To convert the decimal number **77** to binary, divide the number by 2 repeatedly and record the remainders.
| Division Step | Quotient | Remainder |
|---------------|----------|-----------|
| 77 ÷ 2 | 38 | 1 |
| 38 ÷ 2 | 19 | 0 |
| 19 ÷ 2 | 9 | 1 |
| 9 ÷ 2 | 4 | 1 |
| 4 ÷ 2 | 2 | 0 |
| 2 ÷ 2 | 1 | 0 |
| 1 ÷ 2 | 0 | 1 |
**Binary Representation:**
Read the remainders from bottom to top:
`1 0 0 1 1 0 1`
So, **77** in binary is:
**`1001101₂`**
---
##### **b. 1144**
**Conversion Steps:**
To convert the decimal number **1144** to binary, divide the number by 2 repeatedly and record the remainders.
| Division Step | Quotient | Remainder |
|---------------|----------|-----------|
| 1144 ÷ 2 | 572 | 0 |
| 572 ÷ 2 | 286 | 0 |
| 286 ÷ 2 | 143 | 0 |
| 143 ÷ 2 | 71 | 1 |
| 71 ÷ 2 | 35 | 1 |
| 35 ÷ 2 | 17 | 1 |
| 17 ÷ 2 | 8 | 1 |
| 8 ÷ 2 | 4 | 0 |
| 4 ÷ 2 | 2 | 0 |
| 2 ÷ 2 | 1 | 0 |
| 1 ÷ 2 | 0 | 1 |
**Binary Representation:**
Read the remainders from bottom to top:
`1 0 0 0 0 1 1 1 1 0 0 0`
So, **1144** in binary is:
**`10001111000₂`**
---
##### **c. 234**
**Conversion Steps:**
To convert the decimal number **234** to binary, divide the number by 2 repeatedly and record the remainders.
| Division Step | Quotient | Remainder |
|---------------|----------|-----------|
| 234 ÷ 2 | 117 | 0 |
| 117 ÷ 2 | 58 | 1 |
| 58 ÷ 2 | 29 | 0 |
| 29 ÷ 2 | 14 | 1 |
| 14 ÷ 2 | 7 | 0 |
| 7 ÷ 2 | 3 | 1 |
| 3 ÷ 2 | 1 | 1 |
| 1 ÷ 2 | 0 | 1 |
**Binary Representation:**
Read the remainders from bottom to top:
`1 1 0 1 0 1 0`
So, **234** in binary is:
**`11101010₂`**
---
### **Summary of Conversions**
| Decimal | Binary |
|---------|--------------|
| 77 | 1001101₂ |
| 1144 | 10001111000₂ |
| 234 | 11101010₂ |
---
### **Additional Explanation**
**Methodology for Conversion:**
1. **Divide the Decimal Number by 2:**
- Perform integer division of the number by 2.
- Record the remainder (either 0 or 1).
2. **Repeat the Process:**
- Use the quotient obtained from the previous division as the new number to divide by 2.
- Continue this process until the quotient is 0.
3. **Construct the Binary Number:**
- The binary number is formed by collecting all the remainders in reverse order (from last to first).
**Example: Converting 77 to Binary**
1. 77 ÷ 2 = 38 remainder **1**
2. 38 ÷ 2 = 19 remainder **0**
3. 19 ÷ 2 = 9 remainder **1**
4. 9 ÷ 2 = 4 remainder **1**
5. 4 ÷ 2 = 2 remainder **0**
6. 2 ÷ 2 = 1 remainder **0**
7. 1 ÷ 2 = 0 remainder **1**
Reading the remainders from bottom to top: **1001101**
Therefore, **77** in binary is **`1001101₂`**.
---
If you have any further questions or need more examples, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución