Pregunta
upstudy study bank question image url

Ures of Variation According to a random sample taken at 12 A.M., body temperatures of healthy adults have a bell-shaped distribution with a mean of \( 98.08^{\circ} \mathrm{F} \) and a standard deviation of \( 0.59^{\circ} \mathrm{F} \). Using Chebysher/s do we know about the percentage of healthy adults with body temperatures that are within 2 standard deviations of the mean? What are the minimum and maximum possible body temperatures that standard deviations of the mean? H. \( 9.2 .44,5.17 \) of 11 points At least \( \square \% \) of healthy adults have body temperatures within 2 standard deviations of \( 98.08^{\circ} \mathrm{F} \). (Round to the nearest percent as needed.)

Ask by Hamilton Best. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At least 75% of healthy adults have body temperatures within 2 standard deviations of 98.08 °F, which is between 96.90 °F and 99.26 °F.

Solución

Using **Chebyshev’s Inequality**, we can determine the minimum percentage of healthy adults whose body temperatures lie within a certain number of standard deviations from the mean, regardless of the distribution's shape. Although the distribution is bell-shaped (suggesting a normal distribution), Chebyshev’s Inequality provides a conservative estimate that applies to any distribution. ### Given: - **Mean (μ):** \( 98.08^{\circ} \mathrm{F} \) - **Standard Deviation (σ):** \( 0.59^{\circ} \mathrm{F} \) - **Number of Standard Deviations (k):** 2 ### Chebyshev’s Inequality Formula: \[ \text{At least } 1 - \frac{1}{k^2} \text{ of the data lies within } k \text{ standard deviations of the mean.} \] ### Calculation for \( k = 2 \): \[ 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4} = 75\% \] **Therefore:** - **At least 75%** of healthy adults have body temperatures within **2 standard deviations** of the mean. ### Determining the Range: To find the **minimum** and **maximum** body temperatures within 2 standard deviations: \[ \text{Minimum Temperature} = \mu - 2\sigma = 98.08^{\circ} \mathrm{F} - 2(0.59^{\circ} \mathrm{F}) = 96.90^{\circ} \mathrm{F} \] \[ \text{Maximum Temperature} = \mu + 2\sigma = 98.08^{\circ} \mathrm{F} + 2(0.59^{\circ} \mathrm{F}) = 99.26^{\circ} \mathrm{F} \] ### **Summary:** - **At least 75%** of healthy adults have body temperatures between **96.90 °F** and **99.26 °F**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Chebyshev's theorem tells us that no less than \( \frac{1}{k^2} \) of data points will fall within \( k \) standard deviations of the mean, regardless of the data's distribution shape. For \( k = 2 \) standard deviations, this means that at least \( \frac{1}{2^2} = \frac{1}{4} \) or 25% of data points will be within 2 standard deviations of the mean. In the case of body temperatures, this implies at least 75% of healthy adults have body temperatures within this range. To find the minimum and maximum possible body temperatures, we take the mean and add/subtract two times the standard deviation: - Minimum: \( 98.08 - 2 \times 0.59 = 96.90^\circ F \) - Maximum: \( 98.08 + 2 \times 0.59 = 99.26^\circ F \) So, healthy adult body temperatures range from \( 96.90^\circ F \) to \( 99.26^\circ F \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad