\( 1 \leftarrow \) Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=5 x+2, g(x)=x-6 \) What is the domain of \( f+g \) ? B. The domain of \( f+g \) is \( (-\infty, \infty) \). (Type your answer in interval notation.) C. The domain of \( f+g \) is \( \{ \) is \( \varnothing \). (Use a corma to separate answers as needed.) \( (f-g)(x)=\square \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find \( f+g \), \( f-g \), \( fg \), and \( \frac{f}{g} \): 1. \( f + g = (5x + 2) + (x - 6) = 6x - 4 \) 2. \( f - g = (5x + 2) - (x - 6) = 4x + 8 \) 3. \( fg = (5x + 2)(x - 6) = 5x^2 - 30x + 2x - 12 = 5x^2 - 28x - 12 \) 4. \( \frac{f}{g} = \frac{5x + 2}{x - 6} \) The domain of each function involves ensuring \( g(x) \neq 0 \). Now for the domain of \( f+g \), indeed it is \( (-\infty, \infty) \) because you can add the two functions across all real numbers without any restrictions. For \( f - g \), the expression simplifies to \( 4x + 8 \), which also has a domain of \( (-\infty, \infty) \). So in summary: - \( (f-g)(x) = 4x + 8 \) - The domain of \( f+g \) is \( (-\infty, \infty) \).