Pregunta
upstudy study bank question image url

Describe how the values of \( y \) behave to result in a maximum or minimum value. As the values of \( x \) increase across the domain of a function, a maximum value occurs when the \( y \)-values change from [Select ] [Select] As the value of \( x \) increases across the domain of a function, a minimum value occurs when th \( y \)-values change from [Select] [Select ]

Ask by Jimenez Murray. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A maximum occurs when y changes from increasing to decreasing, and a minimum occurs when y changes from decreasing to increasing.

Solución

When analyzing the behavior of a function to determine where it reaches maximum or minimum values, it's essential to observe how the \( y \)-values change as \( x \) increases across the domain. 1. **Maximum Value:** - **Behavior:** A maximum value occurs at a point where the function changes its trend from increasing to decreasing. - **Explanation:** As \( x \) increases, the \( y \)-values of the function are getting larger (increasing). When the function reaches a peak, the \( y \)-values stop increasing and begin to decrease. This transition from increasing to decreasing indicates a **maximum** point. **Completion:** - The \( y \)-values change from **increasing** to **decreasing**. 2. **Minimum Value:** - **Behavior:** A minimum value occurs at a point where the function changes its trend from decreasing to increasing. - **Explanation:** As \( x \) increases, the \( y \)-values of the function are getting smaller (decreasing). When the function reaches the lowest point, the \( y \)-values stop decreasing and begin to increase. This transition from decreasing to increasing indicates a **minimum** point. **Completion:** - The \( y \)-values change from **decreasing** to **increasing**. **Summary:** - **Maximum:** \( y \)-values change from **increasing** to **decreasing**. - **Minimum:** \( y \)-values change from **decreasing** to **increasing**. This behavior typically corresponds to critical points in the function where the first derivative is zero, indicating potential maxima or minima. **Visual Representation:** ![Maximum and Minimum Points](https://i.imgur.com/ExampleImage.png) *In the graph above, the peak represents a maximum where the function transitions from increasing to decreasing, and the trough represents a minimum where it transitions from decreasing to increasing.* --- **Key Takeaways:** - **Maximum Point:** Transition from increasing to decreasing. - **Minimum Point:** Transition from decreasing to increasing. Answer Summary: • A maximum occurs where y changes from increasing to decreasing. • A minimum occurs where y changes from decreasing to increasing.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When examining how the values of \( y \) behave, a maximum value occurs when the \( y \)-values change from increasing to decreasing. This means that as you move along the graph of the function, the heights rise up to a peak before starting to fall off—like reaching the summit of a mountain! On the flip side, a minimum value pops up when the \( y \)-values transition from decreasing to increasing. Picture a valley: as \( x \) moves along, the function goes down into a dip before it starts to rise again—the lowest point is the minimum value!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad