Pregunta
upstudy study bank question image url

\( F(x)=\frac{(x+2)(x+4)}{(x-4)(x+2)} \) V.A \( = \) H.A \( = \) Hules \( =x=-2 \) x-intercept \( = \) x- intercept

Ask by Chambers Mcguire. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Vertical Asymptote (V.A):** \( x = 4 \) - **Horizontal Asymptote (H.A):** \( y = 1 \) - **Hole:** \( x = -2 \) - **x-Intercept:** \( (-4, 0) \)

Solución

Let's analyze the function: \[ F(x) = \frac{(x + 2)(x + 4)}{(x - 4)(x + 2)} \] ### Simplifying the Function First, notice that the \((x + 2)\) terms in the numerator and denominator cancel out, except at \(x = -2\), where the function is undefined. This results in: \[ F(x) = \frac{x + 4}{x - 4}, \quad \text{with a hole at } x = -2 \] ### 1. **Vertical Asymptote (V.A)** Vertical asymptotes occur where the denominator is zero (and the numerator is not zero at those points). \[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \] **Vertical Asymptote:** \( x = 4 \) --- ### 2. **Horizontal Asymptote (H.A)** For rational functions, if the degrees of the numerator and the denominator are the same, the horizontal asymptote is the ratio of the leading coefficients. Both the numerator and the denominator are degree 1 (linear), and the leading coefficients are both 1. \[ H.A = \frac{1}{1} = 1 \] **Horizontal Asymptote:** \( y = 1 \) --- ### 3. **Hole (Hules)** A hole occurs at values of \(x\) that make both the numerator and denominator zero. From the canceled factor: \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \] **Hole:** \( x = -2 \) --- ### 4. **x-Intercepts** x-intercepts occur where the numerator is zero. After simplifying the function: \[ x + 4 = 0 \quad \Rightarrow \quad x = -4 \] **x-Intercept:** \( (-4, 0) \) --- ### Summary - **Vertical Asymptote (V.A):** \( x = 4 \) - **Horizontal Asymptote (H.A):** \( y = 1 \) - **Hole:** \( x = -2 \) - **x-Intercept:** \( (-4, 0) \) --- ### Additional Information (Optional) **y-Intercept:** To find the y-intercept, evaluate \( F(0) \): \[ F(0) = \frac{0 + 4}{0 - 4} = -1 \] **y-Intercept:** \( (0, -1) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the vertical asymptote (V.A) of the function \( F(x) \), we need to identify where the denominator is equal to zero without being canceled out by the numerator. The denominator is \( (x-4)(x+2) \). Setting \( x-4 = 0 \) gives us \( x = 4 \) as a vertical asymptote. Since \( x = -2 \) is canceled out, we don't count it as a V.A. The horizontal asymptote (H.A) can be determined by analyzing the degrees of the polynomials in the numerator and the denominator. Both the numerator and the denominator are quadratic (degree 2). Therefore, the horizontal asymptote is found by taking the ratio of the leading coefficients, which are both 1. Thus, the horizontal asymptote is \( y = 1 \). The hole in the function is at \( x = -2 \) due to the cancellation of the term \( (x+2) \), which indicates a point of discontinuity that doesn't affect the overall behavior of the function elsewhere. To find the x-intercept, we set the numerator equal to zero. The numerator \( (x+2)(x+4) = 0 \) gives us two x-intercepts at \( x = -2 \) and \( x = -4 \). However, since \( x = -2 \) is a hole, the only valid x-intercept is \( x = -4 \). In summary: V.A \( = 4 \) H.A \( = 1 \) Hole \( = x = -2 \) x-intercept \( = -4 \)

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad