Pregunta
upstudy study bank question image url

aucstion 3 A car with a mass of 650 kg travels at a velocity of \( 60 \mathrm{~km} \mathrm{~h}^{-1} \) and crashes into the back of a truck with a mass of 1000 kg that is travelling in the same direction at \( 30 \mathrm{~km} \cdot \mathrm{~h}^{-1} \) Immedialely after the collision, the truck travels at \( 36 \mathrm{~km} \cdot \mathrm{~h}^{-1} \) in the original direction of motion. (Ignore the effects of friction.) 3.1 Calculate the velocity of the car immediately after the collision 3.2 What was the change in momentum of the car during the collision? 3.3 What should the change in momentum of the truck be? Give a reason for your answer.

Ask by Lang Barber. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**3.1** The car's velocity after the collision is approximately **50.8 km/h**. **3.2** The car's change in momentum during the collision is approximately **−1661.25 kg·m/s**. **3.3** The truck's change in momentum is **+1661.25 kg·m/s**. *Reason:* The truck gains momentum equal in magnitude but opposite in direction to the car's loss due to Newton's Third Law.

Solución

Let's analyze the collision between the car and the truck step by step. ### **Given Data:** - **Mass of the car (\( m_{\text{car}} \))**: 650 kg - **Initial velocity of the car (\( u_{\text{car}} \))**: 60 km/h - **Mass of the truck (\( m_{\text{truck}} \))**: 1000 kg - **Initial velocity of the truck (\( u_{\text{truck}} \))**: 30 km/h - **Final velocity of the truck (\( v_{\text{truck}} \))**: 36 km/h **Note:** We'll convert all velocities from km/h to m/s for consistency in units. ### **Conversion from km/h to m/s:** \[ 1 \, \text{km/h} = \frac{1000 \, \text{m}}{3600 \, \text{s}} = \frac{5}{18} \, \text{m/s} \] \[ \begin{align*} u_{\text{car}} &= 60 \times \frac{5}{18} = 16.6667 \, \text{m/s} \\ u_{\text{truck}} &= 30 \times \frac{5}{18} = 8.3333 \, \text{m/s} \\ v_{\text{truck}} &= 36 \times \frac{5}{18} = 10 \, \text{m/s} \end{align*} \] --- ### **3.1. Calculate the Velocity of the Car Immediately After the Collision (\( v_{\text{car}} \))** **Assumption:** The collision is **elastic**, and **friction is neglected**. **Law of Conservation of Momentum:** \[ \text{Total Momentum Before Collision} = \text{Total Momentum After Collision} \] \[ m_{\text{car}} \times u_{\text{car}} + m_{\text{truck}} \times u_{\text{truck}} = m_{\text{car}} \times v_{\text{car}} + m_{\text{truck}} \times v_{\text{truck}} \] **Plugging in the known values:** \[ 650 \times 16.6667 + 1000 \times 8.3333 = 650 \times v_{\text{car}} + 1000 \times 10 \] \[ 10833.33 + 8333.33 = 650 \times v_{\text{car}} + 10000 \] \[ 19166.66 = 650 \times v_{\text{car}} + 10000 \] \[ 650 \times v_{\text{car}} = 19166.66 - 10000 = 9166.66 \] \[ v_{\text{car}} = \frac{9166.66}{650} \approx 14.111 \, \text{m/s} \] **Converting back to km/h:** \[ v_{\text{car}} \approx 14.111 \times \frac{18}{5} = 50.8 \, \text{km/h} \] **Answer:** **3.1** The velocity of the car immediately after the collision is approximately **50.8 km/h** in the original direction of motion. --- ### **3.2. Change in Momentum of the Car During the Collision (\( \Delta p_{\text{car}} \))** **Momentum (\( p \))** is given by: \[ p = m \times v \] **Change in Momentum (\( \Delta p \))**: \[ \Delta p_{\text{car}} = m_{\text{car}} \times (v_{\text{car}} - u_{\text{car}}) \] \[ \Delta p_{\text{car}} = 650 \times (14.111 - 16.6667) \] \[ \Delta p_{\text{car}} = 650 \times (-2.5557) \approx -1661.25 \, \text{kg·m/s} \] **Interpretation:** A negative sign indicates that the momentum of the car has **decreased** in the direction of motion. **Answer:** **3.2** The change in momentum of the car during the collision is approximately **−1661.25 kg·m/s**. --- ### **3.3. Change in Momentum of the Truck During the Collision and the Reason** **Change in Momentum (\( \Delta p \)) for the Truck:** According to the **Law of Conservation of Momentum**, the total momentum of an isolated system remains constant if no external forces act upon it. Since only the car and the truck are interacting, the momentum lost by the car must be gained by the truck. \[ \Delta p_{\text{truck}} = -\Delta p_{\text{car}} = +1661.25 \, \text{kg·m/s} \] **Reason:** **Newton's Third Law of Motion** states that for every action, there is an equal and opposite reaction. The force exerted by the car on the truck results in an equal and opposite force exerted by the truck on the car. Consequently, the change in momentum of the truck is equal in magnitude but opposite in direction to the change in momentum of the car. **Answer:** **3.3** The change in momentum of the truck is **+1661.25 kg·m/s**. *Reason:* According to Newton's Third Law, the truck experiences an equal and opposite momentum change to that of the car during the collision.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

After the collision, the law of conservation of momentum tells us that the total momentum before the collision will equal the total momentum after the collision. To start, we need to convert the speeds from km/h to m/s: - \( 60 \, \text{km/h} = \frac{60 \times 1000}{3600} = 16.67 \, \text{m/s} \) - \( 30 \, \text{km/h} = \frac{30 \times 1000}{3600} = 8.33 \, \text{m/s} \) - \( 36 \, \text{km/h} = \frac{36 \times 1000}{3600} = 10 \, \text{m/s} \) 3.1 To find the velocity of the car after the collision, we can apply the momentum formula: \( \text{Initial momentum (car + truck)} = \text{Final momentum (car + truck)} \) The initial momentum: \[ \text{PM}_{\text{initial}} = (m_{\text{car}} \cdot v_{\text{car,initial}}) + (m_{\text{truck}} \cdot v_{\text{truck,initial}}) = (650 \, \text{kg} \cdot 16.67 \, \text{m/s}) + (1000 \, \text{kg} \cdot 8.33 \, \text{m/s}) = 10867.5 + 8330 = 19197.5 \, \text{kg} \cdot \text{m/s} \] The final momentum: \[ \text{PM}_{\text{final}} = (m_{\text{car}} \cdot v_{\text{car,final}}) + (m_{\text{truck}} \cdot v_{\text{truck,final}}) = (650 \, \text{kg} \cdot v_{\text{car,final}}) + (1000 \, \text{kg} \cdot 10 \, \text{m/s}) = 650 \cdot v_{\text{car,final}} + 10000 \] Setting the initial momentum equal to final momentum gives: \[ 19197.5 = 650 \cdot v_{\text{car,final}} + 10000 \] Solving for \( v_{\text{car,final}} \): \[ 650 \cdot v_{\text{car,final}} = 19197.5 - 10000 \] \[ 650 \cdot v_{\text{car,final}} = 9197.5 \] \[ v_{\text{car,final}} = \frac{9197.5}{650} \approx 14.16 \, \text{m/s} \] 3.2 The change in momentum of the car is calculated as follows: \[ \Delta p_{\text{car}} = p_{\text{final, car}} - p_{\text{initial, car}} \] Where, \[ p_{\text{initial, car}} = m_{\text{car}} \cdot v_{\text{car,initial}} = 650 \cdot 16.67 \approx 10867.5 \, \text{kg} \cdot \text{m/s} \] And the final momentum: \[ p_{\text{final, car}} = m_{\text{car}} \cdot v_{\text{car,final}} = 650 \cdot 14.16 \approx 9197.5 \, \text{kg} \cdot \text{m/s} \] So, \[ \Delta p_{\text{car}} = 9197.5 - 10867.5 = -1670 \, \text{kg} \cdot \text{m/s} \] 3.3 The change in momentum of the truck will be equal in magnitude but opposite in direction to that of the car, due to Newton's third law of motion. Therefore, the change in momentum for the truck should also be \( +1670 \, \text{kg} \cdot \text{m/s} \). The reason for this is that momentum is conserved in an isolated system, meaning the momentum lost by the car is gained by the truck.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad