Question Norma Simplify: \[ \frac{4^{8}}{4^{-4}} \] A. \( 4^{-32} \) B. \( 4^{-2} \) C. \( 4^{4} \) D. \( 4^{12} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify \(\frac{4^{8}}{4^{-4}}\), we can use the property of exponents that states \(\frac{a^m}{a^n} = a^{m-n}\). This gives us: \[ 4^{8 - (-4)} = 4^{8 + 4} = 4^{12} \] Thus, the answer is \( D. 4^{12} \). Now, let's dive into some engaging additional knowledge! Understanding the rules of exponents can feel like a magic trick! Remember, when dividing like bases, you subtract the exponents—it’s like separating your belongings into neat piles by taking away what you don't need. This makes working with powers much simpler and allows you to tackle even larger equations with confidence! If you’re keen on mastering exponents, consider exploring the fascinating world of logarithms! They’re closely related and add another layer of understanding to how exponents work. Check out books like "The Joy of Exponents" that blend math concepts with fun problems and exercises, making calculations feel less like a chore and more like an intriguing puzzle!