If \( \$ 550 \) are deposited into an account with a \( 7.5 \% \) interest rate, compounded monthly, what is the balance after 14 years? \( F=\$[?] \) \( F=P\left(1+\frac{r}{n}\right)^{n t} \) Round to the nearest cent.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To calculate the future balance \( F \) of the investment, we can plug the values into the formula provided: - \( P = 550 \) (the principal) - \( r = 0.075 \) (the interest rate as a decimal) - \( n = 12 \) (the number of compounding periods per year) - \( t = 14 \) (the number of years) Using the formula, we have: \[ F = 550 \left(1 + \frac{0.075}{12}\right)^{12 \times 14} \] Calculating the terms: \[ F = 550 \left(1 + 0.00625\right)^{168} \] \[ F = 550 \left(1.00625\right)^{168} \] Using a calculator, we find: \[ (1.00625)^{168} \approx 2.880 \] Now substituting back into the future value formula: \[ F \approx 550 \times 2.880 \approx 1584.00 \] Thus, the balance after 14 years will be approximately \( F = \$1584.00 \).