Pregunta

What are the definitions of the x-axis and y-axis in a coordinate system?

Ask by Davison Lewis. in India
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The **x-axis** is the horizontal line in a coordinate system that represents the independent variable, extending from left to right. The **y-axis** is the vertical line that represents the dependent variable, extending upwards and downwards. Together, they form a grid to locate points using ordered pairs (x, y).

Solución

In a **coordinate system**, particularly the **Cartesian coordinate system**, the **x-axis** and **y-axis** are the two perpendicular lines that help define the position of points in a two-dimensional (2D) plane. Here's a detailed explanation of each: ### **1. Cartesian Coordinate System Overview** The Cartesian coordinate system, named after the French mathematician René Descartes, uses two perpendicular lines (axes) to determine the position of points in a plane. These axes intersect at a point called the **origin** (denoted as (0, 0)). ### **2. The X-Axis** - **Definition**: The x-axis is the horizontal number line in the Cartesian coordinate system. - **Orientation**: It extends horizontally from left to right. - **Positive Direction**: To the right of the origin. - **Negative Direction**: To the left of the origin. - **Purpose**: It typically represents the independent variable in equations and graphs. In real-world applications, it can denote quantities like time, distance, or any other measurable parameter depending on the context. - **Representation of Points**: In an ordered pair (x, y), the first number **(x)** specifies the position along the x-axis. **Example**: In the point (3, 2), the x-coordinate is **3**, which means you move 3 units to the right of the origin along the x-axis. ### **3. The Y-Axis** - **Definition**: The y-axis is the vertical number line in the Cartesian coordinate system. - **Orientation**: It extends vertically upwards and downwards. - **Positive Direction**: Above the origin. - **Negative Direction**: Below the origin. - **Purpose**: It typically represents the dependent variable in equations and graphs. In various contexts, it can represent quantities like height, temperature, or any other measurable parameter relevant to the situation. - **Representation of Points**: In an ordered pair (x, y), the second number **(y)** specifies the position along the y-axis. **Example**: In the point (3, 2), the y-coordinate is **2**, which means you move 2 units above the origin along the y-axis. ### **4. Plotting Points Using the Axes** To locate a point (x, y) in the Cartesian plane: 1. **Start at the Origin (0, 0)**. 2. **Move Horizontally** along the x-axis by the value of **x**: - Right if x is positive. - Left if x is negative. 3. **From that Position**, move **Vertically** along the y-axis by the value of **y**: - Up if y is positive. - Down if y is negative. 4. **Mark the Point** at this final position. **Visual Example**: ``` | 3 | * 2 | (3,2) 1 | 0---+---+---+---+ -1 0 1 2 x ``` In this diagram, the point (3, 2) is located by moving 3 units to the right on the x-axis and then 2 units up on the y-axis. ### **5. Extensions to Other Coordinate Systems** While the x-axis and y-axis are fundamental to the 2D Cartesian system, similar concepts extend to higher dimensions: - **Three Dimensions (3D)**: Introduce a third perpendicular axis, typically called the **z-axis**, which extends perpendicularly out of the plane formed by the x and y axes. - **Other Systems**: In polar coordinates, for example, the axes are replaced by a radius and an angle to determine point positions. ### **6. Real-World Applications** Understanding the x-axis and y-axis is crucial in various fields such as: - **Mathematics**: For graphing equations and inequalities. - **Physics**: To represent forces, motion, and other vector quantities. - **Engineering**: In design and spatial analysis. - **Computer Graphics**: For rendering images and user interfaces. - **Economics**: To plot graphs like supply and demand curves. ### **Summary** - **X-Axis**: Horizontal line; represents the independent variable; positive to the right, negative to the left. - **Y-Axis**: Vertical line; represents the dependent variable; positive upwards, negative downwards. - **Together**, they form a grid that allows precise location of points in a two-dimensional space through ordered pairs (x, y).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The x-axis is the horizontal line in a coordinate system where each point is defined by its horizontal distance from the origin (0,0). Essentially, if you move left, you get negative values, and moving right gives you positive numbers. Picture it as a tightrope where the only way is left or right, helping us map out everything in a fun, straight line! On the flip side, the y-axis is the vertical line that indicates the vertical distance from the origin. Going upwards means positive values, while moving downwards leads to negative. Imagine it as an elevator that goes up or down, enabling us to pinpoint locations in our two-dimensional world! Together, they create a perfect grid for all your plotting adventures!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad