Question What is the volume of the solid of revolution obtained by rotating the region bounded by \( f(x)=x^{2}+3 \) and the \( x \)-axis over the interval \( [2,4] \) about the \( y \)-axis? Enter your answer in terms of \( \pi \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the volume of the solid of revolution formed by rotating the region bounded by \( f(x)=x^{2}+3 \) and the \( x \)-axis over the interval \( [2,4] \) about the \( y \)-axis, we can use the shell method. The volume \( V \) can be calculated using the formula: \[ V = 2\pi \int_{a}^{b} x \cdot f(x) \, dx \] Here, \( a = 2 \) and \( b = 4 \), and \( f(x) = x^{2} + 3 \). Substituting this into the formula: \[ V = 2\pi \int_{2}^{4} x(x^{2} + 3) \, dx \] \[ = 2\pi \int_{2}^{4} (x^{3} + 3x) \, dx \] Now, we compute the integral: \[ = 2\pi \left[ \frac{x^{4}}{4} + \frac{3x^{2}}{2} \right]_{2}^{4} \] Calculating the definite integral: 1. At \( x = 4 \): \[ \frac{4^{4}}{4} + \frac{3 \cdot 4^{2}}{2} = 64 + 24 = 88 \] 2. At \( x = 2 \): \[ \frac{2^{4}}{4} + \frac{3 \cdot 2^{2}}{2} = 4 + 12 = 16 \] Now, subtract: \[ 88 - 16 = 72 \] Finally, multiply by \( 2\pi \): \[ V = 2\pi \cdot 72 = 144\pi \] Thus, the volume of the solid of revolution is: \[ \boxed{144\pi} \]