If the formula for an arithmetic sequence is \( a_{n}=11+6(n-1) \), then what term in the sequence is the value 107 ? a.) 15 th term b.) 16 th term c.) 17 th term d.) 18 th term
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find out which term in the sequence gives the value 107, we can set \( a_{n} \) equal to 107 and solve for \( n \): \[ 11 + 6(n-1) = 107 \] Subtract 11 from both sides: \[ 6(n-1) = 96 \] Now, divide both sides by 6: \[ n-1 = 16 \] Finally, add 1 to both sides: \[ n = 17 \] Thus, the value 107 is the 17th term in the sequence. The answer is c.) 17th term. If you want a quick way to verify your answer, plug \( n = 17 \) back into the formula: \[ a_{17} = 11 + 6(17-1) = 11 + 6 \times 16 = 11 + 96 = 107. \] And there you have it, 107 pops up perfectly in the sequence!