Prove that length of a diameter of circle \( x^{2}+y^{2}=q^{2} \) is \( 2 a \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The equation of the circle \( x^2 + y^2 = q^2 \) represents a circle centered at the origin (0, 0) with a radius of \( q \). The diameter of a circle is always twice the radius. Thus, if the radius is \( q \), then the length of the diameter is calculated as \( 2 \times q = 2q \). If you were referring to a specific circle where \( a = q \), then we can say that the length of the diameter of the circle is indeed \( 2a \) where \( a = q \). In a standard circle equation, to find various properties like the diameter, you just need to identify the radius as shown, making it quite straightforward and intuitive!