Pregunta
upstudy study bank question image url

Evaluate the sum of each of the following series:
(1) (to 15 terms)
(2)
b wonke
(3) (to infinity)
(4)
(5)
(6)

Ask by Fleming Bates. in South Africa
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(1) The sum of the series (to 15 terms) is 143.5.
(2) The sum of the series is -29524.
(3) The sum of the infinite series is 200.
(4) The sum of the series is -100.
(5) The sum of the series is 120.
(6) The sum of the series is .

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Let’s solve the series one by one!
(1) The series consists of an alternating pattern of whole numbers and fractions. Grouping gives us:
  • Whole numbers: : which are
  • Fractions: : This can be expressed as . The sum of the numbers is . Thus, the total fraction sum is .
Now, we add both sums: .
(2) For the series , observe that this is a geometric series where each term is times the previous (starting from ). The last term is calculated as , leading to (since ). Using the formula for the sum of a geometric series, :
(3) The series is a geometric series with the first term and a ratio . The sum to infinity for a geometric series where is given by:
(4) In the series , notice the pattern of consecutive 4 terms: . The sum of these 4 terms is . To find how many groups there are up to -30, we can rearrange the last term.
Each group of four has cumulative sum 0, so we need to determine the last series’ valid terms and add the final negative term to get:
It equals as it appears in pairs until we hit .
(5) The series consists of pairs. Each pair generates:
for terms . If we look at the series, they cancel out satisfactorily until , which gives us .
Finally, the last term is and yields a total of up to 15 unique pairs.
(6) The series represents the variable term from , leading to the value of sums:
This can be recognized as a geometric series where , . Utilizing the sum from the geometric series:
[ S = \frac{a}{1 - r} = \frac{3x^2}{1 - 3x} \

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad