Pregunta
The dollar value \( v(t) \) of a certain car model that is \( t \) years old is given by the following exponential function. \[ v(t)=26,000(0.86)^{t} \] Evaluating an exponential function that models a real-world situation the value of the car after 5 years and after 12 years. Round your answers to the nearest dollar as necessary. Value after 5 years: Value after 12 years: T】]
Ask by Schofield Davey. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
After 5 years, the car is worth \$12,220. After 12 years, it is worth \$4,264.
Solución
To determine the value of the car after 5 years and after 12 years, we'll use the given exponential depreciation function:
\[
v(t) = 26,000 \times (0.86)^t
\]
### **Value After 5 Years:**
\[
v(5) = 26,000 \times (0.86)^5
\]
First, calculate \( (0.86)^5 \):
\[
(0.86)^5 \approx 0.470 \quad (\text{rounded to three decimal places})
\]
Now, multiply by 26,000:
\[
v(5) = 26,000 \times 0.470 \approx 12,220
\]
**Rounded to the nearest dollar:**
\[
\boxed{\$12,\!220}
\]
### **Value After 12 Years:**
\[
v(12) = 26,000 \times (0.86)^{12}
\]
First, calculate \( (0.86)^{12} \):
\[
(0.86)^{12} \approx 0.164 \quad (\text{rounded to three decimal places})
\]
Now, multiply by 26,000:
\[
v(12) = 26,000 \times 0.164 \approx 4,264
\]
**Rounded to the nearest dollar:**
\[
\boxed{\$4,\!264}
\]
### **Summary:**
- **Value after 5 years:** \$12,220
- **Value after 12 years:** \$4,264
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the value of the car after 5 years, we plug \( t = 5 \) into the function: \[ v(5) = 26,000(0.86)^{5} \approx 26,000 \times 0.558 \approx 14,508 \] So, the value after 5 years is approximately $14,508. Now for 12 years: \[ v(12) = 26,000(0.86)^{12} \approx 26,000 \times 0.228 \approx 5,928 \] Thus, the value after 12 years is approximately $5,928.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium