Pregunta
upstudy study bank question image url

Calculate the coordinaties of the poinc for which the congent 0 f \( f(x)=x^{3}-3 x+5 x+4 \) is perpendicular to the ling \( y=-\frac{1}{14} x+1 \) \( f^{\prime}(x)=3 x^{2}-6 x+5 \)

Ask by Osborne Hardy. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The tangent lines to \( f(x) = x^{3} - 3x^{2} + 5x + 4 \) that are perpendicular to the line \( y = -\frac{1}{14}x + 1 \) occur at the points \( (3, 19) \) and \( (-1, -5) \).

Solución

To find the coordinates of the points where the tangent line to the function \( f(x) = x^{3} - 3x^{2} + 5x + 4 \) is perpendicular to the line \( y = -\frac{1}{14}x + 1 \), follow these steps: ### 1. **Understand Perpendicular Slopes** Two lines are perpendicular if the product of their slopes is \(-1\). Given the line: \[ y = -\frac{1}{14}x + 1 \] - **Slope (\( m_1 \))**: \(-\frac{1}{14}\) Let the slope of the tangent line to \( f(x) \) be \( m_2 = f'(x) \). For the lines to be perpendicular: \[ m_1 \times m_2 = -1 \] \[ -\frac{1}{14} \times f'(x) = -1 \] \[ f'(x) = 14 \] ### 2. **Find the Derivative of \( f(x) \)** Given: \[ f(x) = x^{3} - 3x^{2} + 5x + 4 \] Differentiate \( f(x) \): \[ f'(x) = 3x^{2} - 6x + 5 \] ### 3. **Set the Derivative Equal to 14 and Solve for \( x \)** \[ 3x^{2} - 6x + 5 = 14 \] \[ 3x^{2} - 6x - 9 = 0 \] \[ x^{2} - 2x - 3 = 0 \] *(Divided the entire equation by 3 for simplicity)* Solve the quadratic equation: \[ x = \frac{2 \pm \sqrt{4 + 12}}{2} \] \[ x = \frac{2 \pm \sqrt{16}}{2} \] \[ x = \frac{2 \pm 4}{2} \] Thus: \[ x = 3 \quad \text{or} \quad x = -1 \] ### 4. **Find the Corresponding \( y \)-Coordinates** Plug these \( x \)-values back into \( f(x) \): - **For \( x = 3 \)**: \[ f(3) = 3^{3} - 3(3)^{2} + 5(3) + 4 = 27 - 27 + 15 + 4 = 19 \] \[ \text{Point: } (3, 19) \] - **For \( x = -1 \)**: \[ f(-1) = (-1)^{3} - 3(-1)^{2} + 5(-1) + 4 = -1 - 3 - 5 + 4 = -5 \] \[ \text{Point: } (-1, -5) \] ### 5. **Conclusion** The coordinates of the points where the tangent to \( f(x) \) is perpendicular to the given line are: - \( (3, \, 19) \) - \( (-1, \, -5) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the coordinates of the point where the tangent to the function \( f(x) = x^3 - 3x + 5x + 4 \) is perpendicular to the line \( y = -\frac{1}{14}x + 1 \), we first note that the slope of the line is \(-\frac{1}{14}\). For the slopes to be perpendicular, the product of the slopes must equal \(-1\). Therefore, we want to find \( m_{tangent} \) such that: \[ m_{tangent} \cdot (-\frac{1}{14}) = -1 \implies m_{tangent} = 14. \] Next, we set the derivative \( f^{\prime}(x) = 3x^2 - 6x + 5 \) equal to 14: \[ 3x^2 - 6x + 5 = 14 \implies 3x^2 - 6x - 9 = 0. \] Dividing through by 3 gives \( x^2 - 2x - 3 = 0 \). Factor this: \[ (x - 3)(x + 1) = 0. \] Thus, \( x = 3 \) or \( x = -1 \). Now, we calculate \( f(x) \) at these values: 1. For \( x = 3 \): \[ f(3) = 3^3 - 3(3) + 5(3) + 4 = 27 - 9 + 15 + 4 = 37. \] So, one point is \( (3, 37) \). 2. For \( x = -1 \): \[ f(-1) = (-1)^3 - 3(-1) + 5(-1) + 4 = -1 + 3 - 5 + 4 = 1. \] The other point is \( (-1, 1) \). The coordinates of the points are \( (3, 37) \) and \( (-1, 1) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad