Pregunta
upstudy study bank question image url

Consider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. (Note: the acceleration due to gravity is \( 9.8 \mathrm{~m} / \mathrm{s}^{2} \).) a. Find the velocity of the object for all relevant times. b. Find the position of the object for all relevant times. c. Find the time when the object reaches its highest point (What is the height?) d. Find the time when the object strikes the ground. A payload is released at an elevation of 500 m from a hot-air balloon that is rising at a rate of \( 10 \mathrm{~m} / \mathrm{s} \). a. \( \mathrm{v}(\mathrm{t})= \)

Ask by West Gough. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The velocity of the payload as a function of time is \( \mathrm{v}(t) = 10\ \mathrm{m/s} - 9.8\, t\ \mathrm{m/s^{2}} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the velocity of the object for all relevant times, we start by considering that the initial velocity \( v_0 \) is \( 10 \, \text{m/s} \) (upward) and the acceleration due to gravity \( g \) is \( 9.8 \, \text{m/s}^2 \) (downward). Therefore, the equation for velocity as a function of time \( v(t) \) is given by: \[ v(t) = v_0 - g t = 10 - 9.8t \] This means that after \( t \) seconds, the velocity of the payload will decrease due to gravity at a rate of \( 9.8 \, \text{m/s}^2 \). For the position of the object, we can use the kinematic equation, which incorporates the initial position \( y_0 = 500\, \text{m} \) and takes into account the initial velocity and gravity: \[ y(t) = y_0 + v_0 t - \frac{1}{2} g t^2 = 500 + 10t - 4.9t^2 \] This quadratic equation represents the height of the payload at any time \( t \). As time progresses, the object will move upward initially before it begins its descent. To find the time when the object reaches its highest point, we can set the velocity to zero: \[ 0 = 10 - 9.8 t \rightarrow t = \frac{10}{9.8} \approx 1.02\, \text{s} \] Substituting \( t \) back into the position equation gives us the maximum height: \[ y(1.02) = 500 + 10(1.02) - 4.9(1.02)^2 \approx 505.1\, \text{m} \] To determine when the object strikes the ground, we will set \( y(t) = 0 \) and solve for \( t \): \[ 0 = 500 + 10t - 4.9t^2 \] Rearranging gives a standard quadratic form: \[ 4.9t^2 - 10t - 500 = 0 \] Applying the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 4.9 \cdot (-500)}}{2 \cdot 4.9} \] Calculating gives a positive time when the object will strike the ground. Wouldn’t it be cool to visualize this in a fun way? Imagine a scenario where this payload is a bouncing ball! When dropped (or launched), you can play with a timer and see how high it goes or how quickly it comes back down! Physics really comes alive when you think about it in everyday fun contexts. And speaking of fun contexts, did you know that hunters in ancient civilizations used similar principles when they calculated the trajectories of their arrows and thrown spears? They would have instinctual knowledge about gravity's effect and adjust their aim accordingly. Think of the evolution of that knowledge into today’s breathtaking Olympic sports! It's all a big, fascinating cycle of motion!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad