11) \( \frac{3 a b \cdot 2 a^{4}}{4 a^{2} b^{3}} \) \( \begin{array}{ll}\text { 13) } \frac{2 y x^{4} \cdot 2 x}{3 x^{3} y^{2}} & \text { 12) } \frac{4 x y^{3}}{x y^{2} \cdot 2 x^{3} y^{3}} \\ \text { 15) } \frac{2 x^{4} y^{3}}{\left(x^{-2} y^{2}\right)^{4}} & \text { 14) } \frac{3 x^{2}}{4 y x^{3} \cdot 2 y x^{3} \cdot y x^{4}} \\ \text { 17) }\left(\frac{x^{-4} y^{2}}{x^{0}}\right)^{3} & \text { 16) } \frac{2 n^{-3}}{\left(2 m^{4}\right)^{-2}}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
When it comes to simplifying algebraic fractions, you might want to keep a mental checklist! Start by factoring out common terms in the numerator and denominator, and remember to simplify powers before you divide. It's like finding hidden treasures in math—by uncovering common factors, you can make the expression simpler and more manageable! Another fun trick is to keep track of negative exponents! They may seem scary, but they’re just playing hide-and-seek. If you see \(x^{-n}\), remember it’s equal to \( \frac{1}{x^n} \). This knowledge allows you to convert those pesky negative exponents into positive ones and makes for a smoother journey while simplifying expressions!