\[ \begin{aligned} 4 x+10 y & =-8 \\ -5 x-7 y & =9 \end{aligned} \] Answer Amengt 1 out of 2 Write the three relevant determinants in any order: \( \square \) , \( \square \) ? \( \square \) Solution to the system: \( x= \) \( \square \) \( y= \) \( \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the relevant determinants for the given system of equations, we use the coefficients of the variables to form the determinant matrix: 1. The main determinant \( D \) is given by the determinant of the coefficient matrix: \[ D = \begin{vmatrix} 4 & 10 \\ -5 & -7 \end{vmatrix} = (4)(-7) - (10)(-5) = -28 + 50 = 22 \] 2. The determinant \( D_x \) for \( x \) is calculated by replacing the \( x \)-column in the coefficient matrix with the constant terms: \[ D_x = \begin{vmatrix} -8 & 10 \\ 9 & -7 \end{vmatrix} = (-8)(-7) - (10)(9) = 56 - 90 = -34 \] 3. The determinant \( D_y \) for \( y \) is found by replacing the \( y \)-column with the constant terms: \[ D_y = \begin{vmatrix} 4 & -8 \\ -5 & 9 \end{vmatrix} = (4)(9) - (-8)(-5) = 36 - 40 = -4 \] So, the relevant determinants are \( 22, -34, -4 \). Now, using these determinants, we can find the solution for \( x \) and \( y \). Solution to the system: \[ x = \frac{D_x}{D} = \frac{-34}{22} \approx -1.545 \] \[ y = \frac{D_y}{D} = \frac{-4}{22} \approx -0.182 \] So, the solution to the system is \( x \approx -1.545 \), \( y \approx -0.182 \).