2. Mandie claims that \( 2^{5}<4^{2}+3^{2} \). Is she correct? Justify your answer by showing your complete solution.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To determine if Mandie's claim \( 2^{5} < 4^{2} + 3^{2} \) is correct, we need to calculate both sides of the inequality. First, calculate \( 2^{5} \): \[ 2^{5} = 32 \] Next, calculate \( 4^{2} + 3^{2} \): \[ 4^{2} = 16 \quad \text{and} \quad 3^{2} = 9 \] \[ 4^{2} + 3^{2} = 16 + 9 = 25 \] Now we compare the two values: \[ 32 < 25 \] This statement is false. Therefore, Mandie is incorrect in her claim that \( 2^{5} < 4^{2} + 3^{2} \). Instead, \( 2^{5} \) is greater than \( 4^{2} + 3^{2} \).