Pregunta
The equation of a circle is \( (x+2)^{2}+(y-3)^{2}=9 \). What are the coordinates of the center of this circle?
Ask by Murray Harmon. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The center of the circle is at \((-2, 3)\).
Solución
To find the coordinates of the center of the circle given by the equation
\[
(x+2)^{2}+(y-3)^{2}=9,
\]
we can identify the center from the standard form of the equation of a circle, which is
\[
(x-h)^{2}+(y-k)^{2}=r^{2},
\]
where \((h, k)\) is the center of the circle and \(r\) is the radius.
From the given equation:
- The term \((x+2)^{2}\) indicates that \(h = -2\) (since it is in the form \((x - h)\)).
- The term \((y-3)^{2}\) indicates that \(k = 3\).
Thus, the coordinates of the center of the circle are
\[
(-2, 3).
\]
Therefore, the center of the circle is at the point \((-2, 3)\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The equation of the circle is given in the standard form \( (x-h)^{2}+(y-k)^{2}=r^{2} \), where \((h, k)\) is the center and \(r\) is the radius. From your equation \( (x+2)^{2}+(y-3)^{2}=9 \), we can identify that \(h = -2\) and \(k = 3\). Therefore, the center of the circle is at the coordinates \((-2, 3)\). And just like that, you have the center! Now, if you ever need to sketch this circle, just remember to plot that point and use the radius, which is 3 (since \( \sqrt{9} = 3 \)), to draw a circle around it.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium