Pregunta
upstudy study bank question image url

Which of these is an
exponential function?

Ask by Chadwick West. in the United States
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The second function, , is an exponential function.

Solución

An exponential function is characterized by having the variable in the exponent. The general form of an exponential function is:
where:
  • is a constant,
  • is the base (with and ),
  • is the exponent.
Let’s analyze the given functions:
    • Here, is the base raised to the power of 2, and then a constant is added.
    • This is a polynomial function, not an exponential function, because the variable is not in the exponent.
    • In this case, is the base, and is in the exponent.
    • This fits the form of an exponential function perfectly.
Conclusion:
The function is an exponential function.
Answer:
Only the second function, , is an exponential function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function is an exponential function because it has the form , where is a constant. In this case, is the base raised to the power of , which defines it as exponential. On the other hand, is a polynomial function, not exponential.
Exponential functions are not just about rapid growth; they can also model decay, like radioactivity! A classic example is the famous equation , which describes how a radioactive substance decreases over time. Now that’s some real-world drama, isn’t it?
If you’re diving deeper into functions, consider spending time with resources on calculus and graphing techniques. Understanding concepts like the natural exponential function and its properties can elevate your math game. A dazzling place to start could be classic textbooks or interactive online platforms that offer calculus problems and explanations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad